Computing for Mathematics: Handout 9

This handout contains a summary of the topics covered and an activity to carry out prior or during your lab session.

At the end of the handout is a specific coursework like exercise.

For further practice you can do the exercises available at the differential equations chapter of Python for Mathematics.

1 Summary

The purpose of this handout is to cover differential equations which corresponds to the differential equations chapter of Python for Mathematics.

The topics covered are:

- Creating a symbolic function
- Writing a differential equation
- Solving a differential equation

2 Activity

We will be tackling the problem from the tutorial of the differential equations chapter of Python for Mathematics.

A container has volume V of liquid which is poured in at a rate proportional to e^{-t} (where t is some measurement of time). Initially the container is empty and after t = 3 time units the rate at which the liquid is poured is 15.

1. Show that $V(t) = \frac{-15e^3}{1-e^3}(1-e^{-t})$ 2. Obtain the limit $\lim_{t\to\infty} V(t)$

There are instructions for how to do all of this is in the differential equations chapter of Python for Mathematics.

- 1. Create the symbolic variables t and k as well as the symbolic function V.
- 2. Create the variable differential_equation which has value the differential equation $\frac{d}{dt}V(t) = ke^{-t}$
- 3. Use the sympy.dsolve tool to obtain the general solution to this differential equation.
- 4. Use the initial conditions given (that V(0) = 0) to obtain the particular solution to this differential equation.
- 5. Use the fact that V(3) = 15 to obtain a particular value for k.
- 6. Obtain the required limit.

3 Coursework like exercise

- 1. Create a variable differential_equation that has value a the differential equation: $\frac{dy}{dx} = \cos y$.
- 2. Create a variable general_solution that has value the general solution (as an equation) for the differential equation.
- 3. Create a variable particular_solution that has value the particular solution (as an equation) for the differential equation for the condition that $y(\pi) = 5$.

Create a symbolic function g:

Solve the differential equation $\frac{dy}{dx} = x^2$ given the condition y(1) = 0

<pre>import sympy as sym g = sym.Function(g)</pre>	<pre>import sympy as sym y = sym.Function(g) x = sym.Function(x)</pre>
Create the differential equation $\frac{dy}{dx} = x$:	<pre>lhs = sym.diff(y(x), x) rhs = x ** 2 differential_equation = sym.Eq(lhs, rhs)</pre>
import sympy as sym	condition = $\{y(1): 0\}$
y = sym.Function(g)	<pre>solution = sym.dsolve(</pre>
x = sym.Function(x)	<pre>differential_equation, y(x),</pre>
lhs = sym.diff(y(x), x)	ics=condition,
differential_equation = sym.Eq(lhs, x))