Computing for Mathematics: Handout 9

This handout contains a summary of the topics covered and an activity to carry out prior or during your lab session.
At the end of the handout is a specific coursework like exercise.
For further practice you can do the exercises available at the difterential equations chapter of Python tor Mathematics.

1 Summary

The purpose of this handout is to cover differential equations which corresponds to the difterential equations chapter of Python for Mathematics.

The topics covered are:

- Creating a symbolic function
- Writing a differential equation
- Solving a differential equation

2 Activity

We will be tackling the problem from the tutorial of the difterential equations chapter of Python for Mathematics.
A container has volume V of liquid which is poured in at a rate proportional to e^{-t} (where t is some measurement of time). Initially the container is empty and after $t=3$ time units the rate at which the liquid is poured is 15 .

1. Show that $V(t)=\frac{-15 e^{3}}{1-e^{3}}\left(1-e^{-t}\right) 2$. Obtain the limit $\lim _{t \rightarrow \infty} V(t)$

There are instructions for how to do all of this is in the differential equations chapter of Python for Mathematics.

1. Create the symbolic variables t and k as well as the symbolic function V .
2. Create the variable differential_equation which has value the differential equation $\frac{d}{d t} V(t)=k e^{-t}$
3. Use the sympy.dsolve tool to obtain the general solution to this differential equation.
4. Use the initial conditions given (that $V(0)=0$) to obtain the particular solution to this differential equation.
5. Use the fact that $V(3)=15$ to obtain a particular value for k.
6. Obtain the required limit.

3 Coursework like exercise

1. Create a variable differential_equation that has value a the differential equation: $\frac{d y}{d x}=\boldsymbol{\operatorname { c o s }} y$.
2. Create a variable general_solution that has value the general solution (as an equation) for the differential equation.
3. Create a variable particular_solution that has value the particular solution (as an equation) for the differential equation for the condition that $y(\pi)=5$.

Create a symbolic function g :

```
import sympy as sym
g = sym.Function(g)
```

Create the differential equation $\frac{d y}{d x}=x$:

```
import sympy as sym
y = sym.Function(g)
x = sym.Function(x)
lhs = sym.diff(y(x), x)
differential_equation = sym.Eq(lhs, x)
```

Solve the differential equation $\frac{d y}{d x}=x^{2}$ given the condition $y(1)=0$

```
import sympy as sym
y = sym.Function(g)
x = sym.Function(x)
lhs = sym.diff(y(x), x)
rhs = x ** 2
differential_equation = sym.Eq(lhs, rhs)
condition = {y(1): 0}
solution = sym.dsolve(
    differential_equation,
    y(x),
    ics=condition,
)
```

