## Computing for Mathematics: Handout 7

This handout contains a summary of the topics covered and an activity to carry out prior or during your lab session.
At the end of the handout is a specific coursework like exercise.
For further practice you can do the exercises available at the sequences chapter of Python for Mathematics.

## 1 Summary

The purpose of this handout is to cover sequences which corresponds to the probability chapter of Python for Mathematics.

The main topic covered here is recursion.

## 2 Activity

We will be tackling the problem from the tutorial of the sequences chapter of Python for Mathematics.
A sequence $a_{1}, a_{2}, a_{3}, \ldots$ is defined by:

$$
\left\{\begin{array}{l}
a_{1}=k, \\
a_{n+1}=2 a_{n}-7, n \geq 1,
\end{array}\right.
$$

where $k$ is a constant.

1. Write down an expression for $a_{2}$ in terms of $k$.
2. Show that $a_{3}=4 k-21$
3. Given that $\sum_{r=1}^{4} a_{r}=43$ find the value of $k$.

There are instructions for how to do all of this is in the probability chapter of Python for Mathematics.

1. Define a python function generate_a which uses recursion to give the values of the sequence $a_{n}$.
2. Use a symbolic variable for $k$ to obtain $a_{1}, a_{2}, a_{3}$ and $a_{4}$.
3. Obtain the sum of these four values to get an equation for $k$.

## 3 Coursework like exercise

Consider this recursive definition for the sequence $a_{n}$ :

$$
a_{n}= \begin{cases}c & \text { if } \mathrm{n}=1 \\ 3 a_{n-1}+\frac{c}{n} & \end{cases}
$$

1. Output the sum of the 15 terms.
2. Given that $c=2$ output $\frac{d f}{d x}$ where:

$$
f(x)=a_{1}+a_{2} x+a_{3} x^{2}+a_{4} x^{3}
$$

3. Given that $c=2$ output $\int f(x) d x$

## 4 Summary examples

Define the following sequence:

$$
a_{n}= \begin{cases}1 & \text { if } n=1 \\ \frac{1}{a_{n-1}+1} & \text { otherwise }\end{cases}
$$

```
def generate_a(n):
    """
    Generate the sequence a_n using recursion
    """
    if n == 1:
        return 1
    return 1 / (generate_a(n - 1) + 1)
```

