Computing for Mathematics: Handout 6

This handout contains a summary of the topics covered and an activity to carry out prior or during your lab session.
At the end of the handout is a specific coursework like exercise.
For further practice you can do the exercises available at the matrices chapter of Python for Mathematics.

1 Summary

The purpose of this handout is to cover matrices which corresponds to the probability chapter of Python for Mathematics.

The topics covered are:

- Creating matrices.
- Manipulating matrices.
- Solving a system of linear equations using matrices.

2 Activity

We will be tackling the problem from the tutorial of the matrices chapter of Python for Mathematics.
The matrix A is given by $A=\left(\begin{array}{lll}a & 1 & 1 \\ 1 & a & 1 \\ 1 & 1 & 2\end{array}\right)$.

1. Find the determinant of $A 2$. Hence find the values of a for which A is singular. 3. For the following values of a, when possible obtain A^{-1} and confirm the result by computing $A A^{-1}: 1 . a=0 ; 2$. $a=1 ; 3 . a=2 ; 4 . a=3$.
There are instructions for how to do all of this is in the probability chapter of Python for Mathematics.
2. Create a variable A which has value the matrix A.
3. Create a variable determinant which has value the determinant of A.
4. Find the values of a for which the determinant of A is 0 . This corresponds to the values for which A is singular.
5. Substitute the given values of a in to A and compute the inverse. Multiply the inverse by A to obtain the identity matrix $\left(\begin{array}{lll}1 & 0 & \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right)$ which confirms the result.

3 Coursework like exercise

The matrix A is given by $A=\left(\begin{array}{ccc}a & 3 & 1 \\ a & 2 a & 3 \\ -3 & 2 & 2 a\end{array}\right)$.

1. Create a variable determinant which has value the determinant of A
2. Create a variable singular_values_of_a which has value the set of values of a for which A is singular.
3. Output a list which contains the singular values of a which are pure real numbers.

Create the matrix $B=\left(\begin{array}{cc}3 & 5 \\ 1 & -2\end{array}\right)$.

```
import sympy as sym
B = sym.Matrix(((3, 5), (1, -2)))
```

Obtain the determinant of $B=\left(\begin{array}{cc}3 & 5 \\ 1 & -2\end{array}\right)$.

```
import sympy as sym
B = sym.Matrix(((3, 5), (1, -2)))
B.det()
```

Obtain the inverse of $B=\left(\begin{array}{cc}3 & 5 \\ 1 & -2\end{array}\right)$

```
import sympy as sym
B = sym.Matrix(((3, 5), (1, -2)))
B.inv()
```

Calculate $\left(\begin{array}{cc}3 & 5 \\ 1 & -2\end{array}\right)\left(\left(\begin{array}{ll}3 & 1 \\ 4 & 1\end{array}\right)+6\left(\begin{array}{ll}2 & 3 \\ 1 & 1\end{array}\right)\right)$

```
import sympy as sym
B = sym.Matrix(((3, 5), (1, -2)))
C = sym.Matrix(((3, 1), (4, 1)))
D = sym.Matrix(((2, 3), (1, 1)))
B @ (C + 6 * D)
```

Solve the linear system:

$$
\begin{aligned}
& x+2 y=3 \\
& 3 x+y=4
\end{aligned}
$$

```
import sympy as sym
M = sym.Matrix(((1, 2), (3, 1)))
b = sym.Matrix(((3,), (4,)))
M.inv() @ b
```

