Computing for Mathematics: Handout 2

This handout contains a summary of the topics covered and an activity to carry out prior or during your lab session.
At the end of the handout is a specific coursework like exercise.
For further practice you can do the exercises available at the algebra chapter of Python tor Mathematics.

1 Summary

The purpose of this handout is to cover Algebra which corresponds to the Algebra chapter of Python for Mathematics.

The topics covered are:

- Creating symbolic numeric values
- Getting numerical value of a symbolic expression
- Factorising an expression
- Expanding an expression
- Simplifying an expression
- Solving an equation
- Substituting values in to expressions

2 Activity

We will be tackling the problem from the tutorial of the Algebra chapter of Python for Mathematics.

1. Rationalise the denominator of $\frac{1}{\sqrt{2}+1}$
2. Consider the quadratic: $f(x)=2 x^{2}+x+1$:
(a) Calculate the discriminant of the quadratic equation $2 x^{2}+x+1=0$. What does this tell us about the solutions to the equation? What does this tell us about the graph of $f(x)$?
(b) By completing the square, show that the minimum point of $f(x)$ is $\left(-\frac{1}{4}, \frac{7}{8}\right)$

There are instructions for how to do all of this is in the Algebra chapter of Python for Mathematics.

1. Create the variable expression which has value $\frac{1}{\sqrt{2}}+1$.
2. Use the sympy .simplify command to rationalise the denominator.
3. Create the variable expression which has value the quadratic from the second part of the question: $f(x)=2 x^{2}+x+1$.
4. Use the sympy . equation and sympy sovleset command to find the roots of f.
5. Create the variable expression which has value the expression $a(x-b)^{2}+c$.
6. Solve the various equations that give the correct values of a, b and c to be able to complete the square for $f(x)$.

3 Coursework like exercise

Consider the equation: $x^{2}+4-y=\frac{1}{y}$:

1. Create a variable general_solution which has value the set of solutions to the equation for x (as a function of y).
2. Create a variable specific_solution which has value the set of solutions when $y=5$.

4 Summary examples

Create the symbolic value $1 / 3$

```
import sympy
value = 1 / sympy.S(3)
```

Get the numeric value of a symbolic variable $1 / 3$

import sympy float (value)

Factor $x^{2}-81$

```
import sympy
x = sympy.Symbol("x")
sympy.factor(x ** 2 - 81)
```

Expand $(x-1)(x+1)$

```
import sympy
x = sympy.Symbol("x")
sympy.expand((x - 1) * (x + 1))
```

Simplify $(x-3)(x-3)$

```
import sympy
x = sympy.Symbol("x")
sympy.simplify((x - 3) * (x - 3))
```

Solve $x+4=x^{2}$

```
import sympy
x = sympy.Symbol("x")
equation = sym.Eq(x + 4, x ** 2)
sympy.solveset(equation, x)
```

Substitute $x=-2$ in to $x^{2}-4$

```
import sympy
```

$\mathrm{x}=$ sympy.Symbol("x")
expression $=\mathrm{x} * * 2-4$
expression.subs(\{x: -2\})

