Queueing Theory Exercise Sheet Solutions

1. Fill in the gaps in the following table:

Statistic	Notation	$M / M / 1$	$M / M / 2$	$M / M / k$
Number of people in queue	L_{q}	$\frac{\rho^{2}}{1-\rho}$	$\frac{2 \rho^{3}}{1-\rho^{2}}$	$\frac{\left(\frac{\lambda}{\mu}\right)^{k+1} \pi_{0}}{k k!\left(1-\frac{\lambda}{k \mu}\right)^{2}}$
Number of people in system	L_{c}	$\frac{\rho}{1-\rho}$	$\frac{2 \rho}{1-\rho^{2}}$	$\frac{\left(\frac{\lambda}{\mu}\right)^{k+1} \pi_{0}}{k k!\left(1-\frac{\lambda}{k \mu}\right)^{2}}+\frac{\lambda}{\mu}$
Average waiting time in queue	W_{q}	$\frac{\rho}{\mu(1-\rho)}$	$\frac{\rho^{2}}{\mu\left(1-\rho^{2}\right)}$	$\frac{\left(\frac{\lambda}{\mu}\right)^{k} \pi_{0}}{k!\left(1-\frac{\lambda}{k \mu}\right)^{2} \mu}$
Average time in system	W_{c}	$\frac{1}{\mu(1-\rho)}$	$\frac{1}{\mu\left(1-\rho^{2}\right)}$	$\frac{\left(\frac{\lambda}{\mu}\right)^{k} \pi_{0}}{k k!\left(1-\frac{\lambda}{k \mu}\right)^{2}{ }_{\mu}}+\frac{1}{\mu}$

2. - FIFO:

Total waiting time $=0+1+(1+2)+(1+2+3)+\cdots+(1+2+3+\cdots+(n-1))$

$$
\begin{aligned}
& =\sum_{k=1}^{n-1} \sum_{j=0}^{k} j=\sum_{k=1}^{n-1} \frac{k(k+1)}{2} \\
& =\frac{1}{2}\left(\sum_{k=1}^{n-1} k^{2}+\sum_{k=1}^{n-1} k\right) \\
& =\frac{1}{2}\left(\frac{(n-1) n(2 n-1)}{6}+\frac{n(n-1)}{2}\right) \\
& =\frac{1}{2}\left(\frac{(n-1) n(2 n+2)}{6}\right)=\frac{(n-1) n(n+1)}{6}
\end{aligned}
$$

However a total of n customers are served thus:

$$
W_{q}=\frac{(n-1)(n+1)}{6}=\frac{n^{2}-1}{6}
$$

as required.

- LIFO

Total waiting time $=0+n+(n+(n-1))+\cdots+(n+\cdots+2)$

$$
\begin{aligned}
& =\sum_{k=0}^{n-2} \sum_{j=0}^{k}(n-j)=\sum_{k=0}^{n-2} \sum_{j=n-k}^{n} j=\sum_{k=0}^{n-2}\left(\sum_{j=0}^{n} j-\sum_{j=0}^{n-k-1} j\right) \\
& =\sum_{k=0}^{n-2}\left(\frac{n(n+1)}{2}-\frac{(k-n)(1+k-n)}{2}\right)=\sum_{k=0}^{n-2} \frac{(k+1)(2 n-k)}{2} \\
& =\frac{1}{2}\left(-\sum_{k=0}^{n-2} k^{2}+(2 n-1) \sum_{k=0}^{n-2} k+\sum_{k=0}^{n-2} 2 n\right) \\
& =\frac{1}{2}\left(-\frac{(n-2)(n-1)(2 n-3)}{6}+\frac{(n-2)(n-1)(2 n-1)}{2}+2 n(n-1)\right)=\frac{(n-1) n(n+1)}{3}
\end{aligned}
$$

However a total of n customers are served thus:

$$
W_{q}=\frac{(n-1)(n+1)}{3}=\frac{n^{2}-1}{3}
$$

as required.
3. We have:

$$
\begin{aligned}
E(T) & =\sum_{n=0}^{\infty} \frac{n(\lambda t)^{n} e^{-\lambda t}}{n!} \\
& =e^{-\lambda t} \sum_{n=0}^{\infty} \frac{(\lambda t)^{n}}{(n-1)!} \\
& =\lambda t e^{-\lambda t} \sum_{n=0}^{\infty} \frac{(\lambda t)^{n-1}}{(n-1)!} \\
& =\lambda t e^{-\lambda t} e^{\lambda t}
\end{aligned}
$$

as required.

5 minutes $\Leftrightarrow \frac{1}{12}$ hours. Thus, $\lambda t=\frac{24}{12}=2$.

$$
\begin{aligned}
& P(X=0)=e^{-2} \approx .135335 \\
& P(X=1)=\frac{2 e^{-2}}{1} \approx .270671 \\
& P(X=2)=\frac{2^{2} e^{-2}}{2} \approx .270671 \\
& P(X=3)=\frac{2^{3} e^{-2}}{6} \approx .180447
\end{aligned}
$$

We have:
$P(X \geq 4)=1-P(X \leq 3)=1-P(X=3)-P(X=2)-P(X=1)-P(X=0) \approx .142877$
4. We have:

$$
\begin{aligned}
E(T) & =\int_{0}^{\infty} \lambda t e^{-\lambda t} d t \\
& =-\left.\frac{(\lambda t) e^{-\lambda t}}{\lambda}\right|_{0} ^{\infty}+\int_{0}^{\infty} e^{-\lambda t} d t \\
& =-\left.\frac{e^{-\lambda t}}{\lambda}\right|_{0} ^{\infty}=\frac{1}{\lambda}
\end{aligned}
$$

as required.
By definition: $F(x)=P(X \leq x)=\int_{0}^{x} \lambda e^{-\lambda t} d t=1-e^{-\lambda x}$. We have $\lambda=36$ which gives:

$$
\begin{aligned}
& P\left(X \leq \frac{1}{60}\right)=1-e^{\frac{-36}{60}} \approx .451188 \\
& P\left(X \leq \frac{1}{30}\right)=1-e^{\frac{-36}{30}} \approx .698806 \\
& P\left(X>\frac{1}{30}\right)=1-P\left(X \leq \frac{1}{30}\right)=e^{\frac{-36}{30}} \approx .301194
\end{aligned}
$$

5. The Markov chain is given:

which has rate matrix:

$$
\left(\begin{array}{cccc}
-\lambda & \lambda & 0 & 0 \\
\mu & -(\lambda+\mu) & \lambda & 0 \\
0 & \mu & -(\lambda+\mu) & \lambda \\
0 & 0 & \mu & -\mu
\end{array}\right)
$$

The steady state equations are given by:

$$
\begin{aligned}
\pi_{0} \lambda & =\pi_{1} \mu \\
\pi_{1}(\lambda+\mu) & =\pi_{0} \lambda+\pi_{2} \mu \\
\pi_{2}(\lambda+\mu) & =\pi_{1} \lambda+\pi_{3} \mu \\
\pi_{3} \mu & =\pi_{2} \lambda
\end{aligned}
$$

The solution for this system can be found (make sure you are able to do this!) to be:

$$
\begin{aligned}
& \pi_{0}=\frac{1}{1+\rho+\rho^{2}+\rho^{3}} \\
& \pi_{1}=\rho \pi_{0} \\
& \pi_{2}=\rho^{2} \pi_{0} \\
& \pi_{3}=\rho^{3} \pi_{0}
\end{aligned}
$$

as required. The mean number of vehicles at the station is given by:

$$
\begin{aligned}
\sum_{i=0}^{3} i \pi_{i} & =\sum_{i=0}^{3} \frac{i \rho^{i}}{1+\rho+\rho^{2}+\rho^{3}} \\
& =\frac{1}{1+\rho+\rho^{2}+\rho^{3}} \sum_{i=0}^{3} i \rho^{i} \\
& =\frac{\rho\left(1+2 \rho+3 \rho^{2}\right)}{1+\rho+\rho^{2}+\rho^{3}}
\end{aligned}
$$

6. We have the Markov chain given by

The steady state equations are:

$$
\begin{aligned}
\pi_{0} \lambda & =\pi_{1} \mu \\
\pi_{1}\left(\frac{\lambda}{2}+\mu\right) & =\pi_{0} \lambda+\pi_{2} \mu \\
& \vdots \\
\pi_{k}\left(\frac{\lambda}{k+1}+\mu\right) & =\pi_{k-1} \frac{\lambda}{k}+\pi_{k+1} \mu
\end{aligned}
$$

By inspection we have:

$$
\begin{aligned}
\pi_{1} & =\rho \pi_{0} \\
\pi_{2} & =\frac{\rho^{2}}{2} \pi_{0} \\
\pi_{3} & =\frac{\rho^{3}}{3!} \pi_{0} \\
& \vdots \\
\pi_{k+1} & =\frac{\rho^{k+1}}{(k+1)!} \pi_{0}
\end{aligned}
$$

We conjecture that $\pi_{i}=\frac{\rho^{i}}{i!} \pi_{0}$ for all $i \geq 1$. We prove this by induction. For $i=1$ we have $\pi_{1}=\rho \pi_{0}$ as required. Let us now assume that $\pi_{i}=\frac{\rho^{i}}{i!} \pi_{0}$ for all $i \leq n$ for some $n \geq 1$. From above we then have:

$$
\pi_{n+1}=\frac{\pi_{n}\left(\frac{\lambda}{n+1}+\mu\right)-\pi_{n-1} \frac{\lambda}{n}}{\mu}=\pi_{0}\left(\frac{\rho^{n}}{n!}\left(\frac{\rho}{n+1}+1\right)-\frac{\rho}{n!}\right)=\frac{\rho^{n+1}}{(n+1)!} \pi_{0}
$$

as required.
Finally, taking the sum or probabilities equal to 1 , we have:

$$
\sum_{k=0}^{\infty} \frac{\rho^{k}}{k!} \pi_{0}=1 \Rightarrow \pi_{0}=e^{-\rho}
$$

thus we have $\pi_{i}=\frac{\rho^{i}}{i!} e^{-\rho}$ for all $i \geq 0$.
7. We have $\lambda=5$ and $\mu=6$, thus for the formula for the $M / M / 1$ queue we have: $L_{c}=\frac{\rho}{1-\rho}=5$ which gives an hourly cost of $5+5 \times 8=\$ 45$ per hour.
If a second distribution centre is setup we can expect the arrival rate at each centre to be $\lambda=\frac{5}{2}$. We still have $\mu=6$. The average number of workers at each centre is: $L_{c}=\frac{5}{7}$, thus $\frac{10}{7}$ overall. This gives an hourly cost of $2 \times 5+\frac{80}{7} \approx \$ 21.43$ per hour. Thus, employing a second distributor is justified.
8. We can use the formulas from question 1 to obtain the following table:

	$M / M / 1$	$M / M / 2$
λ	.4	.4
μ	.8	.5
ρ	.5	.4
π_{0}	$(1-\rho)=.5$	$\frac{1-\rho}{1+\rho}=\frac{6}{14} \approx .4286$
L_{q}	$\frac{(.5)^{2}}{1-5} .5$	$\frac{2 *(.4)^{3}}{1-.42^{2}} \approx .15$
W_{q}	$\frac{5}{4}=1.25$	$\frac{8}{21} \approx .38095$
W_{c}	$\frac{5}{2}=2.5$	$\frac{50}{21} \approx 2.38095$
L_{c}	1	$\frac{20}{21} \approx .952381$
$P($ wait $)$	$1-\pi_{0}=\frac{1}{2}$	$1-\pi_{0}-\pi_{1}=1-\frac{6}{14}\left(1+\frac{4}{5}\right) \approx .228570$

(The last point uses the fact that $\pi_{1}=\frac{\lambda}{\mu} \pi_{0}$ in an $M / M / 2$ queue.)
From this analysis it could be recommended that the new proposal is implemented. Indeed, this would give a shorter wait to customers (W_{q} and $P($ wait $)$).

