Queueing Theory Exercise Sheet Solutions

1. Fill in the gaps in the following table:
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However a total of n customers are served thus:

as required.
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3. We have:
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as required.
5 minutes < 35 hours Thus, A\t = 12 = 2.
P(X =0) = .135335
P(X=1)= T ~ .270671
P(X =2) =27 ~ 270671
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We have:

P(X>4)=1-P(X<3)=1-P(X =3)—P(X =2)-P(X = 1)-P(X

4. We have:

as required.
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5. The Markov chain is given:
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which has rate matrix:
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The steady state equations are given by:
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The solution for this system can be found (make sure you are able to do this!) to be:
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as required. The mean number of vehicles at the station is given by:
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6. We have the Markov chain given by
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The steady state equations are:

oA = T1j

Wl(% + ,u) = 7T0)\ + ot

Wk(k_j\_l ) = Tpo13 + Thp1pe



By inspection we have:
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We conjecture that m; = f.—;wo for all © > 1. We prove this by induction. For ¢ = 1 we

have m; = pmy as required. Let us now assume that m; = %71’0 for all ¢+ < n for some
n > 1. From above we then have:
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as required.

Finally, taking the sum or probabilities equal to 1, we have:
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thus we have m; = ’Z’.—:e_p for all i > 0.

. We have A = 5 and g = 6, thus for the formula for the M/M/1 queue we have:
L.= ﬁ = 5 which gives an hourly cost of 5+ 5 x 8 = $45 per hour.

If a second distribution centre is setup we can expect the arrival rate at each centre
to be A = % We still have p = 6. The average number of workers at each centre is:
L. = 2, thus & overall. This gives an hourly cost of 2 x 5 + 2 ~ $21.43 per hour.
Thus, employing a second distributor is justified.

8. We can use the formulas from question 1 to obtain the following table:

M/M/1 M/M)2
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W, 2=125 2~ .38095

W, 2=25 % ~ 2.38095

L. 1 U~ .952381

P(wait) | 1—my=1 |1—-mp—m =1—3(1+ %)~ 228570

(The last point uses the fact that m = 371'0 in an M/M/2 queue.)

From this analysis it could be recommended that the new proposal is implemented.
Indeed, this would give a shorter wait to customers (W, and P(wait)).



