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Queueing Theory

A queueing system consists of:

_— ) — | —

arrivals departure

wait service

Arrival process

Waiting regime

Service process

Departure process
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Examples

Customers waiting to pay at the supermarket

Patients at a medical clinic waiting to see a doctor

e Passengers waiting at the bus stop

Aeroplanes circling an airport waiting to land

Parts on a production line waiting for further processing
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Arrival Process

The arrival process can be:

e Deterministic:
(] o (] o

0 1 2 3

time

e Random:
e 0 o o

T T Ts Ta time

Here T1, T, T3,... are random interarrival times.
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Arrival Process

e Batched:

e00_
(YYYY)

N,
@
e o

T T2 Ts T4 time.

The batch sizes N; and interarrival times T; can be
deterministic or random.

e Typed arrivals: arrivals can be of different types, requiring
different types of service.

We consider random arrivals on this course.
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Waiting Regime

The waiting regime typically consists of a buffer size. This is just
the maximum number of people/units that can wait in the queue
to be served. People/units that arrive when the buffer is full are
either lost to the system, or come back later.

8/63



Service Process

The service process typically consists of:

¢ Service times: can be deterministic, random, batched and/or
depend on the type of customer. They can also depend on the
queue size.

e Number of servers

e The service discipline:

» FIFO: First In First Oout
» LIFO: Last In First Oout
» SIRO: Service In Random Order
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Departure Process

This is the outcome of the arrival, waiting and service processes.
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Examples

o Customer waiting to pay at the supermarket. Random
arrivals. Multiple servers with random service times, number
may depend on queue size. May have typed customers such
as “8 items of less” or “pay by cash”,

e Patients at a medical clinic waiting to see a doctor.
Deterministic arrivals (appointment times). Random service
times.

e Passengers waiting at the bus stop. Random arrivals. Random
service times with batched service.

e Aeroplanes circling an airport waiting to land. Random
arrivals. Deterministic service times (approximately every 2
minutes at Heathrow).
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Aims of queueing analysis
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Aims of queueing analysis

In general we want to know things like:

e Average time a customer is in the system

o Average queue length

o Utilisation of servers (proportion of time busy)
These are examples of performance measures for the system. We
may be designing or trying to improve a queueing system. We
would like to be able to gauge the effect of:

e A change in arrival rate

e A change in service time

e A change in the number of servers

A change in the service regime
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Approaches to queueing analysis

There are a variety of approaches to the study of queueing
systems:

¢ Real World: real-world systems provide the best information,
but are expensive to experiment with.

e Simulation: simulation allows cheap analysis of the effects of
change to a system and is the only practical way to deal with
very complex queueing systems.

e Theory: theoretical analysis is only possible for relatively
simple systems, but provides unrivalled insight into why
queues behave as they do,

This course takes the theoretical approach to queueing.

14 /63



Example

Suppose 3 customers arrive one just after the other with service
requirements (in units of time):

10, 20,30

In a FIFO regime the average time in the system will be:

104+30+60 _ 100
3 3
In a LIFO regime the average time in the system will be:

304+ 50+ 60 _ 140
3 3
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The arrival process

The most important characteristic of the arrival process is:
A = average number of arrivals per unit time

Note that A depends on the time unit you use, so that A =2
arrivals per minute is equivalent to A = 120 arrivals per hour.

The arrival rate can change over time, in which case we use the
notation A(t) for the arrival rate at time t.

We assume that arrivals follow a Poisson process for the rest of the
course.
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The arrival process

If an arrival process is a Poisson process, the number of arrivals
occurring within any interval of time of length t, follows a Poisson
distribution with parameter At.

The probability that there are n arrivals in a time interval of length
t is equal to:
\t ne—)\t
p(n) = % forn=0,1,2,...
n!
and is independent of the number of units currently in the system
or the history of arrivals prior to the start of the interval.

The average number of arrivals in an interval of length t is At and
the variance is also equal to At (properties of the Poisson

distribution).

17 /63



Infinitesimal Arrival Rate

Consider a short interval of length vt and let N(t,t + ~t) be the
number of arrivals between t and t 4+ «vt. From the expression for
the Poisson distribution:

P(N(t, t+7t) = 1) = (\yt)e M = (Ayt) <1 — Ayt + (/\zt)2 — .. )

where we have expanded e~*'t in a Taylor series. As vt — 0,

(7vt)? and higher order terms become negligible and:

P(N(t,t+~t) =1) = Ayt
P(N(t,t+~t)=0)~1— Myt
P(N(t,t+~t) >1)=~0
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Inter-Arrival Times

For a poisson process, the time between events (arrivals) must
follow a negative exponential distribution.

To show this, assume we start observing a Poisson process
immediately after an event (arrival) and say this occurred at time
0. The probability that we have no events at time t is:

P(N(0,t) =0) = e

but this is equal to the probability that the time between two
successive events (arrivals) is greater than t. Writing X as the
time between two successive event (arrivals), this means that:

P(X >t)=e
PX<t)=1-e "
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Inter-Arrival Times

We know that P(X < t) = F(t), where F(t) is the cumulative
density function (cdf) of the distribution of time between events.
The probability density function (pdf) is given by

dF
f(t) = 90
f(t) = Ne M

but this is the pdf of a negative exponential distribution. Thus,
inter arrival times ~ NegExp()).
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The memoryless property

The most important property of the negative exponential
distribution is the memoryless property. This says that if you have
a NegExp(\) inter arrival time, and have already waited time t for
the next arrival, then the time remaining until the next arrival still
have NegExp(\) distribution.

i.e. the amount of time you have waited tells you nothing about
how long you still have to wait.

The exponential distribution is the only continuous distribution

with this property. It can be used to describe e.g. the arrival of
telephone calls at an exchange, the arrival of customer at a store
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The memoryless property

The memoryless property is equivalent to the conditional
probability statement:

P(Ti>s+t|Ti>s)=P(T; >t)

The proof is a straight forward application of the definition of
conditional probability, and the fact that P(T; > t) = e

P(Ti>s+t|Ti>s)=PLT>s |T;;(s7-1;t>ll)3( Ti<s+t)
_ P(Ti>s+t)

P(Ti>s)

e~ As+t) — M — P( T > t)

e—As
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Memoryless property paradox

Consider the following argument. Suppose we have a Poisson
process of rate A, and we turn up at some random time t to
observe it. On average, we will arrive half way between two
arrivals. Thus the expected time until the next arrival will be half
the expected time between any two arrivals, that is %
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Memoryless property paradox

Consider the following argument. Suppose we have a Poisson
process of rate A, and we turn up at some random time t to
observe it. On average, we will arrive half way between two
arrivals. Thus the expected time until the next arrival will be half
the expected time between any two arrivals, that is %

But the memoryless property tells us that the time from our
appearance to the next arrival should still be NegExp(\), with

mean %: a contradiction!
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Memoryless property paradox

Of course there is a flaw in the previous argument.

If we turn up at a random time, then we are more likely to turn up
between two widely spaced arrivals than between two closely
spaced arrival. Thus, the inter arrival period we turn up in will on
average be larger than the norm, and so its expected length will be
larger than the norm (in fact, exactly twice the norm)
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Merging and thinning

The poisson process has many useful properties. Two of these
concern merging and thinning.

0 1 2 3

time

time

0o 1 2 3 4 5 6 7
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Merging and thinning

If we merge a Poisson process rate A; with an independent Poisson
process rate Ay, then the result is a Poisson process rate A1 + Ap.
By merging we mean that we add all of the arrivals together.
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Merging and thinning

We thin a process by selecting arrivals at random. For example we
could toss a coin for each arrival: heads we keep it, tails it is
discarded.

N
w

Io.
--|®
o
o
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Merging and thinning

We thin a process by selecting arrivals at random. For example we
could toss a coin for each arrival: heads we keep it, tails it is
discarded.
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o
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Merging and thinning

If we start with a Poisson process rate A, and the probability of
keeping an arrival is p, then the results is a Poisson process rate
PA.

(A proof of these results is not part of the course)
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The service process

Most simple queueing models assume that that service times have
a negative exponential distribution with parameter i, so that the

pdf is written as:
f(t) = pe

where % is the average length of a service.

If this is true, the service process is also a Poisson process and
service times will also obey the memoryless property. For example,
if you arrive at a cash desk and find the server busy and the service
process is a Poisson process, the expected time until the service
finishes serving will be independent of how long the current service
has been in progress.
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The service process

What is the expected waiting time of a unit that joins the queue
and finds n unites ahead of it(n — 1 in the queue and 1 being

served)?
Total expected time = n x % = ﬁ
Variance = n x % = “—”2

Standard deviation = %

The distribution of the waiting times is the convolution of n
negative exponential distributions. l.e. a gamma distribution with
parameters (n, p1):

Mtn—le—ut

="

,t>0
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Classification of queues

There is a classification scheme for commonly encountered queues
(originally devised by David Kendall). A general queue is denoted:

A/B/m/n

where we make the following assumptions:

1. Inter-arrival times are independent and give by some
distribution A.

2. Service times are independent and given by some distribution
B.

3. There are m servers.
4. There is a buffer of size n.
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Standard notation for distributions

There is also some standard notation for the possible types of
distribution A and B:

e M the exponential distribution (Markovian)

e D deterministic

Ey the Erlang distribution with k stages
e Hj the hyper-exponential with k channels

e G a general distribution
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The M/M/1 queue
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The M/M/1 queue

The M/M/1 queue has Markov arrival and service processes, one
server and infinite waiting spaces. We can describe how a queueing
system works using a transition diagram. The transition diagram
for the M/M/1 queue is given below:

A A A
N NN
NI I

y y y

We study queues as continuous Markov chains.

34 /63



Stability of queues
Recall:
A A A
YA YAR
A A N
p p p

This has rate matrix:

—-A A 0 0 0 ...
wo =N+ p) A 00 ...
0 w —(A+p) X0
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Steady state of a single server queue

Consider a single server queue with infinite buffer, arrival rate A
and service rate p, as shown on the previous slide.

Using the transition diagram on the previous slide, and balancing
the probability flows into and out of states, the steady-state
equations for this model are:

7T0)\ =T
m1( A+ p) = T\ + mop
mo(A 4 1) = mA + m3p

(A4 p) = Tim1 A+ i p

We solve these iteratively.

36
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Steady state of a single server queue

The first equation gives:

A

T = —T0

Substituting this into the second equation gives:

A A A <)\>2
To=—"—=-—Tg— —To= || 7o
[T 1 I

A

3
Similarly, the third equation gives: w3 = <7) mo. We postulate:

m

()
mi=\|—] mo
I

this will be proved using an inductive process.
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Proof by induction

i
We assume that 7; = (%) 7o is true for all i < n and show that
this implies that it must also hold for the (n+ 1) term. We know:

(A4 p) = T A + mipap

N i N i—1
but 7; = <ﬁ> o and wi_1 = <ﬁ> o, thus:

A\ L
ikl = = (M) o

as required. We have shown that if the result is true for 7; and
mi—1, it is true for miy1. We have also shown that it is true for mg
and 71, therefore it must be true for all ;.
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Steady state of a single server queue

To find mo, we use the additional equation ;2 m; = 1:

thus, mg =1 — A and so = (1_ A) (A)'_
H M M

Note: this proof only holds for % < 1 as otherwise ), (%)I
does not converge. If A > p then the sum is infinite and there is
no solution to the steady state equations. In this case the queue is
unstable: its length grows indefinitely. (If A > u then customers
are arriving faster than the server can deal with them.)
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Steady state of a single server queue

The traffic intensity is given by p = % The M/M/1 queue is
stable if and only if p < 1.

For a stable queue, we can use the steady state distribution to
describe the behaviour of the queue:

e The proportion of time the server is busy is 1 — w9 = p. The
proportion of time the system is idle is 7.

e The average number of units in the system is:

Le=3Y 72 im=(1—p)pZyip™?
=(1- P)Pﬁ

P
(1-p)
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Steady state of a single server queue

e The average number of units in the queue is:

Ly = Z?il(i —mi = Z?il Imj — 2?21 i
=Lc—(1—mo)

(1-p)
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Steady state of a single server queue

¢ The average time in the queue W, (assuming FIFO) is the
average number of units in the system when the new unit
arrives (L), multipled by the average time for one unit to be

served (%) . Therefore:

p

AT
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Steady state of a single server queue

e The average time spent in the system W, (assuming FIFO) is
the average spent in the queue (W) plus the average time it
takes to service one unit. Therefore:

We=Wq+

_ 1
— u(l-p)

(note that we have used the memoryless property to tell us that
when you arrive, the service time remaining for the person
currently being served is still NegExp(\))
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Little's queueing formulae
For any G/G/m/n queue take:

A = arrivals per unit time
L = mean number in system W, = mean time in system
Ly = mean number in queue W, = mean time in queue

Ls = mean number in service W5 = mean time in service

then provided the queue has a long-term steady state:

Le = AW,
Ly =AW,
Lo = AW,

Note that the units match: X is measured in customer/time, L is
measured in customers and W is measured in time.
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Little's queueing formulae

For any M/M/1 queue:

N
b

p

1-p

L.
Lq
Ls=p

W, =
Wy = ——

45
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Multi-server queues
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Multi-server queues

The M/M/2 queue.

Suppose we have arrivals at rate A, and two servers who each serve
at rate p. The operational difference between two servers rate p
each, and a single server rate 2y, is that if there is only one person
in the system then only one server is active at rate p.

A A A
YR YAR
IR IS

u 2 2

7 7
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Multi-server queues

The steady state equations are
MO\ = Tl
(A + p) = moA + m2p
mo(A 4 2u) = mA + m324

(A4 2p) = Tt A+ mip12p

Solving these iteratively we obtain:

i
Wi:mﬂ'o foralli>1
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Multi-server queues

Setting 7w = 1 gives:

i—1
> iso T = To (1+ Py 12:A1 )

(o)
T2

This only works if A < 2u, otherwise the sum does not converge
and no solution exists. In this case we have p = #-. So for p < 1
we have:

1—p I—p;

Wozm T = 1—|—,0p
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Multi-server queues

We have arrivals at a rate X and k servers who each serve at a rate
1
A A A A A
N NSy 7 NN
RIS I
u 2u 3y

ku ky
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Multi-server queues

The steady state equations are

TOA = M1l
7'('1()\ + M) = oA + m2U
7o\ +2u) = T\ + m33u

(A + ki) = 1 A + T kp

Ti( A+ kp) = mig A+ mip1kp for i > k
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Multi-server queues

Solving these iteratively we obtain:

()

il

(2)

klki—k

mo for i < k
=

mo for i > k

We now set > 2w = 1 to give:

k=1 (A i ~ (2 i
1= ;(;;) +;k<!zl'>—k o

52 /63



Multi-server queues

Consider the second term in the sum:
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Multi-server queues

Thus:
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Multi-server queues
The probability an arrival will have to wait for service is the
probability that all servers are busy:

(A)k
P(wait for service) Z M=t

The expected number of servers busy is:

k—1

[e.9]

A

E(channels busy) = Z T+ kZm =
i=k

i=1

The expected number in the queue is:
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Multi-server queues

The expected number in the system is the expected number in the
queue plus the expected number in service:

Y
Le=Lg+2
c q [

We can use Little’s formula to find the expected time in the
system W, and the queue Wjy:

We =
W, =

NN
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Multi-server queue with finite buffer

Consider a queue with arrival rate \, 2 servers each with service
rate u, and a finite buffer of size 2. That is, at most 2 units can
wait in the queue. Arrivals when the buffer is full are assumed to
be lost to the system.

Let the state be the number of customers in the system, which
thus varies from 0 to 4. The transition diagram for this system is:

CNONONONC
I I I

u 2y 2u
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Multi-server queue with finite buffer

As we have a finite buffer there are a finite number of steady-state
equations:
TOA = T14

m1(\ + p) = mo\ + m2u

(N +2u) = T\ + 7324

m3(A 4+ 21) = Mo\ + ma2p
Ta24L = T3

Note that these equations are not independent: if you add all the
equations together and cancel like terms you just get 0 = 0. This
is not a problem however, as we have the additional equation:

mo+m+m+m3+m=1
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Multi-server queue with finite buffer

Putting p = ﬁ the solution to this system is:

_ _1-p
T 14p—2p°

= 2pi7ro fori>1

o

Note, in this case the steady-state equations have a solution even
if p > 1. This is possible because the finite buffer prevents the
length of the queue heading off to infinity.

Exercise: use the steady state distribution to calculate the server

utility, average number in the system and average time spent
waiting. What happens as p — oc.
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Machine interference model

Consider a shop floor with m machines and a single operator,
whose job is to reset/repair machines when they jam or break
down. Suppose that each machine breaks down at a rate A
(average time between breakdowns is 1), and that the operator
repairs machines at rate p (average time to repair a machine is %)

mA (m-1)A (m-2)A A

YA Y A

IR I I

u Y

60 /63



Machine interference model

The steady state equations:

ToMA\ = Tl

m((m — 1A+ p) = momA + map

7rm—1()\ + ,U) = Tm—22\ + Tmit

Tmil = Tm—1A

The solution to these equations is:
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General Birth-Death Process

All of the examples we have seen so far can be viewed as examples
of a birth-death process. If we let the state /i correspond to the size
of population, then a transition i — i 4+ 1 corresponds to a birth,
and a transition i — i — 1 corresponds to a death. (Note that we
allow transitions from 0 — 1, which correspond to immigration
from a separate population.)

A general birth death process allows the birth rate and death rate
to depend on the current state, i.e. we jump from /i — i+ 1 at
rate A;, and from i — i — 1 at rate p;. The transition diagram is:

INI T NI

H1 H2 M3 Hi Hi
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General Birth-Death Process
The steady state equations are:

ToAg = T1H1

m1(A1 + p1) = moAo + m2pe2

mi(ANi + pi) = TicaNi—1 + Tigifiv
The solution to these equations is, for i > 1:

. )\0)\1 c. )\,',1
= 2l
M2 - - - fhi

o

Thus, a steady-state distribution exists provided:

(e 9]

AQAL -+ A
Z 041 L —
T HAp2- -
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