Markov Chains Exercise Sheet - Solutions

1. Assume that a student can be in 1 of 4 states:

- Rich
- Average
- Poor
- In Debt

Assume the following transition probabilities:

- If a student is Rich, in the next time step the student will be:
- Average: . 75
- Poor: . 2
- In Debt: . 05
- If a student is Average, in the next time step the student will be:
- Rich: . 05
- Average: . 2
- In Debt: . 45
- If a student is Poor, in the next time step the student will be:
- Average: . 4
- Poor: . 3
- In Debt: . 2
- If a student is In Debt, in the next time step the student will be:
- Average: . 15
- Poor: . 3
- In Debt: . 55

Model the above as a discrete Markov chain and:
(a) Draw the corresponding Markov chain and obtain the corresponding stochastic matrix.

$$
P=\left(\begin{array}{cccc}
0 & .75 & .2 & .05 \\
.05 & .2 & .3 & .45 \\
.1 & .4 & .3 & .2 \\
0 & .15 & .3 & .55
\end{array}\right)
$$

(b) Let us assume that a student starts their studies as "Average". What will be the probability of them being "Rich" after 1,2,3 time steps?

$$
\begin{gathered}
\pi^{(0)}=(0,1,0,0) \\
\pi^{(1)}=\pi^{(0)} P=(.05, .2, .3, .45)
\end{gathered}
$$

After 1 time step: 5\% chance.

$$
\pi^{(2)}=\pi^{(0)} P^{2}=(.04, .265, .295, .4)
$$

After 2 time steps: 4% chance.

$$
\pi^{(3)}=\pi^{(0)} P^{3}=(.04275, .211, .296, .4025)
$$

After 3 time step: 4.275% chance.
(c) What is the steady state probability vector associated with this Markov chain? The linear system:

$$
\begin{cases}.05 \pi_{A}+.1 \pi_{P} & =\pi_{R} \\ .75 \pi_{R}+.2 \pi_{A}+.4 \pi_{P}+.15 \pi_{D} & =\pi_{A} \\ .2 \pi_{R}+.3 \pi_{A}+.3 \pi_{P}+.3 \pi_{D} & =\pi_{P} \\ .05 \pi_{R}+.45 \pi_{A}+.2 \pi_{P}+.55 \pi_{D} & =\pi_{D} \\ \pi_{R}+\pi_{A}+\pi_{P}+\pi_{D}=1 & \end{cases}
$$

has solution:

$$
\left\{\begin{array}{l}
\pi_{R}=\frac{53}{1241} \\
\pi_{A}=\frac{326}{1241} \\
\pi_{P}=\frac{367}{1241} \\
\pi_{D}=\frac{495}{1241}
\end{array}\right.
$$

2. Consider the following matrices. For the matrices that are stochastic matrices, draw the associated Markov Chain and obtain the steady state probabilities (if they exist, if not, explain why).

$$
\begin{gathered}
\left(\begin{array}{ll}
0 & 1 \\
0 & 1
\end{array}\right) \\
\left(\begin{array}{cccc}
.5 & .25 & .25 \\
1 & 0 & 0 \\
0 & .23 & .77 \\
.8 & .1 & .1
\end{array}\right)
\end{gathered}\left(\begin{array}{cc}
\left(\begin{array}{cc}
\frac{1}{n} & \frac{n-1}{n} \\
\frac{n-1}{n} & \frac{1}{n}
\end{array}\right)
\end{array}\left(\begin{array}{ccc}
.2 & .3 & .5 \\
.1 & .1 & .8 \\
.7 & .1 & .2
\end{array}\right)\right.
$$

(a) The Chain is given:

$$
\pi=(0,1)
$$

(b) Not a square matrix.
(c) The Chain is given:

For $0<n$:

(d) The Chain is given:

$$
\begin{cases}.2 \pi_{1}+.1 \pi_{2}+.7 \pi_{3} & =\pi_{1} \\ .3 \pi_{1}+.1 \pi_{2}+.1 \pi_{3} & =\pi_{2} \\ .5 \pi_{1}+.8 \pi_{2}+.2 \pi_{3} & =\pi_{3} \\ \pi_{1}+\pi_{2}+\pi_{3} & =1\end{cases}
$$

gives:

$$
\pi=\left(\frac{32}{81}, \frac{29}{162}, \frac{23}{54}\right)
$$

(e) The Chain is given:

$$
\begin{cases}.2 \pi_{1}+.5 \pi_{2}+.1 \pi_{4} & =\pi_{1} \\ .3 \pi_{1}+.3 \pi_{2}+.2 \pi_{3} & =\pi_{2} \\ .1 \pi_{1}+.7 \pi_{2}+.1 \pi_{3} & =\pi_{3} \\ .4 \pi_{1}+.2 \pi_{3}+.9 \pi_{4} & =\pi_{4} \\ \pi_{1}+\pi_{2}+\pi_{3}+\pi_{4} & =1\end{cases}
$$

has solution:

$$
\pi=\left(\frac{49}{358}, \frac{29}{358}, \frac{14}{179}, \frac{126}{179}\right)
$$

(f) $P_{22}<0$
(g) The Chain is given:

Immediate to see that:

$$
\pi=(.25, .25, .25, .25)
$$

(h) Only if $\beta=1-\alpha>0$ and $\omega=1-\gamma>0$.
3. Consider the following (incomplete) transition matrix:

$$
\left(\begin{array}{cccc}
? & 2 & 1.5 & .5 \\
? & -5 & 1 & 3 \\
5 & 2 & ? & 1 \\
1 & ? & 1 & -2
\end{array}\right)
$$

(a) Fill in the missing values in the transition matrix.

$$
\left(\begin{array}{cccc}
-4 & 2 & 1.5 & .5 \\
1 & -5 & 1 & 3 \\
5 & 2 & -8 & 1 \\
1 & 0 & 1 & -2
\end{array}\right)
$$

(b) Draw the Markov chain.

(c) Obtain the steady state probabilities.

$$
\begin{cases}-4 \pi_{1}+\pi_{2}+5 \pi_{3}+\pi_{4} & =0 \\ 2 \pi_{1}-5 \pi_{2}+2 \pi_{3} & =0 \\ 1.5 \pi_{1}+\pi_{2}-8 \pi_{3}+\pi_{4} & =0 \\ .5 \pi_{1}+3 \pi_{2}+\pi_{3}-2 \pi_{4} & =0 \\ \pi_{1}+\pi_{2}+\pi_{3}+\pi_{4} & =1\end{cases}
$$

has solution:

$$
\pi=\left(\frac{13}{43}, \frac{37}{215}, \frac{11}{86}, \frac{171}{430}\right)
$$

4. Consider the following matrices. For the matrices that are transition rate matrices, draw the associated Markov Chain and obtain the steady state probabilities (if they exist, if not, explain why).

$$
\begin{align*}
& \left(\begin{array}{ll}
-1 & 1 \\
-1 & 1
\end{array}\right) \quad\left(\begin{array}{ccc}
-5 & 0 & 5 \\
2 & 0 & -2 \\
0 & 3 & -3 \\
0 & 0 & 0
\end{array}\right) \quad\left(\begin{array}{ccc}
-3 & 3 & 0 \\
0 & -3 & 3 \\
3 & 0 & -3
\end{array}\right) \quad\left(\begin{array}{ccc}
-a & a & 0 \\
b & -(a+b) & a \\
0 & b & -b
\end{array}\right) \\
& \text { (a) } \\
& \text { (c) } \\
& \text { (d) } \tag{b}\\
& \left(\begin{array}{cccc}
-1 & 1 & 0 & 0 \\
0 & -4 & 2 & 2 \\
1 & 0 & -2 & 1 \\
2 & 0 & 0 & -2
\end{array}\right) \quad\left(\begin{array}{ccc}
0 & 0 & 0 \\
5 & -10 & 5 \\
10 & 0 & -10
\end{array}\right)\left(\begin{array}{cccc}
-.5 & .5 & 0 & 0 \\
0 & -.5 & .5 & 0 \\
0 & 0 & -.5 & .5 \\
.5 & 0 & 0 & -.5
\end{array}\right) \\
& \text { (e) } \\
& \text { (f) } \\
& \text { (g) } \\
& \left(\begin{array}{ll}
\alpha & \beta \\
\omega & \gamma
\end{array}\right) \\
& \text { (h) }
\end{align*}
$$

(a) $P_{22}>0$
(b) Not a square matrix.
(c) The Chain is given:

$$
\pi=\left(\frac{1}{3}, \frac{1}{3}, \frac{1}{3}\right)
$$

(d) The Chain is given:

3

$$
\begin{cases}-a \pi_{1}+b \pi_{2} & =0 \\ b \pi_{1}-(a+b) \pi_{2}+b \pi_{3} & =0 \\ a \pi_{2}-b \pi_{3} & =0\end{cases}
$$

thus:

$$
\pi=\left(\pi_{1}, \frac{a}{b} \pi_{1},\left(\frac{a}{b}\right)^{2} \pi_{1}\right)
$$

however:

$$
\sum_{i=1}^{3} \pi_{i}=1
$$

so:

$$
\pi_{1}=\frac{1}{1+\frac{a}{b}+\left(\frac{a}{b}\right)^{2}}
$$

(e) The Chain is given:

$$
\begin{cases}-\pi_{1}+\pi_{3}+2 \pi_{4} & =0 \\ \pi_{1}-4 \pi_{2} & =0 \\ 2 \pi_{2}-2 \pi_{3} & =0 \\ 2 \pi_{2}+\pi_{3}-2 \pi_{4} & =0 \\ \pi_{1}+\pi_{2}+\pi_{3}+\pi_{4} & =1\end{cases}
$$

gives:

$$
\pi=\left(\frac{8}{15}, \frac{2}{15}, \frac{2}{15}, \frac{3}{15}\right)
$$

(f) The Chain is given:

(g) The Chain is given:

$$
\pi=\left(\frac{1}{4}, \frac{1}{4}, \frac{1}{4}, \frac{1}{4}\right)
$$

(h) Only if $-\alpha=\beta \geq 0$ and $-\gamma=\omega \geq 0$

$$
\left\{\begin{array}{l}
-\beta \pi_{1}+\omega \pi_{2} \quad=0 \\
\pi_{1}+\pi_{2}=1
\end{array}\right.
$$

Gives:

$$
\pi=\left(\frac{\omega}{\beta+\omega}, \frac{\beta}{\beta+\omega}\right)
$$

if $\beta+\omega=0$ then no steady state exists.
5. Consider the following continuous Markov chain.

(a) Obtain the transition rate matrix.

$$
Q=\left(\begin{array}{cccc}
-1 & 0 & 1 & 0 \\
3 & -5 & 1 & 1 \\
2 & 0 & -2 & 0 \\
1 & 2 & 0 & -3
\end{array}\right)
$$

(b) Obtain the steady state probabilities for this Markov chain.

$$
\begin{cases}-\pi_{1}+3 \pi_{2}+2 \pi_{3}+\pi_{4} & =0 \\ -5 \pi_{2}+2 \pi_{4} & =0 \\ \pi_{1}+\pi_{2}-2 \pi_{3} & =0 \\ \pi_{2}-3 \pi_{4} & =0\end{cases}
$$

has solution:

$$
\left(\frac{2}{3}, 0, \frac{1}{3}, 0\right)
$$

(c) Obtain the corresponding discrete time Markov chain.

Taking $\Delta t=\frac{1}{5}$ gives:

$$
P=\left(\begin{array}{cccc}
\frac{4}{5} & 0 & \frac{1}{5} & 0 \\
\frac{3}{5} & 0 & \frac{1}{5} & \frac{1}{5} \\
\frac{2}{5} & 0 & \frac{3}{5} & 0 \\
\frac{1}{5} & \frac{2}{5} & 0 & \frac{2}{5}
\end{array}\right)
$$

(d) Draw the corresponding Markov chain.

(e) Obtain the steady state probabilities for the discretized Markov chain.

$$
\begin{cases}\frac{4}{5} \pi_{1}+\frac{3}{5} \pi_{2}+\frac{2}{5} \pi_{3}+\frac{1}{5} \pi_{4} & =\pi_{1} \\ \frac{2}{5} \pi_{4} & =\pi_{2} \\ \frac{1}{5} \pi_{1}+\frac{1}{5} \pi_{2}+\frac{3}{5} \pi_{3} & =\pi_{3} \\ \frac{1}{5} \pi_{2}+\frac{2}{5} \pi_{4} & =\pi_{4} \\ \pi_{1}+\pi_{2}+\pi_{3}+\pi_{4} & =1\end{cases}
$$

has solution:

$$
\left(\frac{2}{3}, 0, \frac{1}{3}, 0\right)
$$

