Game Theory Exercise Sheet SOLUTIONS

1.

	s_{1}	s_{2}	s_{3}
r_{1}	$(\underline{6}, \underline{3})$	$(2,2)$	$(2,2)$
r_{2}	$(4,0)$	$(0,3)$	$(\underline{4}, \underline{5})$
r_{3}	$(2,3)$	$(\underline{3}, \underline{4})$	$(3,2)$

(a)

	s_{1}	s_{2}	s_{3}
r_{1}	$(160, \underline{2})$	$(\underline{205}, \underline{2})$	$(44, \underline{2})$
r_{2}	$(175,1)$	$(180, .5)$	$(45, \underline{5})$
r_{3}	$(\underline{201}, 3)$	$(204,4)$	$(\underline{50}, \underline{10})$
r_{4}	$(120,4)$	$(107, \underline{6})$	$(49,2)$

(c)

	s_{1}	s_{2}
r_{1}	$(\underline{7},-2)$	$(\underline{4}, \underline{0})$
r_{2}	$(1,-5)$	$(0,-4)$
r_{3}	$(4,-1)$	$(3,-5)$
r_{4}	$(6,-7)$	$(\underline{4}, \underline{-5})$

(b)

	s_{1}	s_{2}	s_{3}
r_{1}	$(0,0)$	$(-1,1)$	$(1,-1)$
r_{2}	$(1,-1)$	$(0,0)$	$(-1,1)$
r_{3}	$(-1,1)$	$(1,-1)$	$(0,0)$

(d)

Since the number of Nash Equilibria for any given game is odd, we expect to not have identified all equilibria for $(b),(c)$ and (d).
2. The bi-matrix representation is given by:

	100	99	98	\ldots	3	2
100	$(100,100)$	$(97,101)$	$(96,100)$	\ldots	$(1,5)$	$(0,4)$
99	$(101,97)$	$(99,99)$	$(96,100)$	\ldots	$(1,5)$	$(0,4)$
98	$(100,96)$	$(100,96)$	$(98,98)$	\ldots	$(1,5)$	$(0,4)$
\vdots	\ldots	\ldots	\ldots	\ddots	\vdots	\vdots
3	$(5,1)$	$(5,1)$	$(5,1)$	\ldots	$(3,3)$	$(0,4)$
2	$(4,0)$	$(4,0)$	$(4,0)$	\ldots	$(4,0)$	$(2,2)$

This game is immediate to solve with dominance and so the Nash equilibrium is $(2,2)$.
3. We have the bi-matrix game representation:

	R	P	S
R	$(0,0)$	$(-1,1)$	$(1,-1)$
P	$(1,-1)$	$(0,0)$	$(-1,1)$
S	$(-1,1)$	$(1,-1)$	$(0,0)$

There is no pure Nash equilibrium and it is immediate to see that no mixed strategy will have support of size 2 . Indeed, assume that a mixed strategy for player 1 does not play "scissors". Player 2 would have an immediate benefit of playing the pure strategy "paper" (as he'll never lose). This can be shown mathematically.

Thus the mixed strategy for player $1, \rho$, will be of the form:

$$
\rho=(p, q, 1-p-q)
$$

The mixed strategy for player $2, \sigma$, will be of the form:

$$
\sigma=(u, v, 1-u-v)
$$

Using the equality of payoffs theorem, we have:

$$
\begin{equation*}
u_{1}(R, \sigma)=u_{1}(S, \sigma)=u_{1}(T, \sigma) \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
u_{2}(\rho, R)=u_{2}(\rho, S)=u_{2}(\rho, T) \tag{2}
\end{equation*}
$$

We have:

$$
\begin{align*}
& u_{1}(R, \sigma)=-v+1-u-v(a) \\
& u_{1}(P, \sigma)=u-1+u+v \tag{3}\\
& u_{1}(S, \sigma)=-u+v
\end{align*}
$$

Combining (1) and (3) gives:

$$
\begin{aligned}
& (a)=(b) \Rightarrow 3 u+3 v=2 \\
& (a)=(c) \Rightarrow 3 v=1 \\
& (b)=(c) \Rightarrow 3 u=1
\end{aligned}
$$

Thus $\sigma=\left(\frac{1}{3}, \frac{1}{3}, \frac{1}{3}\right)$ as expected. A similar approach using (3) gives the expected result for ρ.
4. Recall:

	Attack Bomber 1	Attack Bomber 2
Transport with Bomber 1	$(80,-80)$	$(100,-100)$
Transport with Bomber 2	$(100,-100)$	$(60,-60)$

There is clearly no pure Nash equilibria. Let the bombers use bomber 1 with probability p (thus they use bomber 2 with probability $1-p$). We denote the mixed strategy of the bombers by $\rho=\{p, 1-p\}$. Let the fighter attack bomber 1 with probability q (thus the fighter attacks bomber 2 with probability $1-q$). We denote the mixed strategy of the fighter by $\sigma=\{q, 1-q\}$. We could use the equality of payoffs theorem to solve this problem. Let us however, consider a direct approach by looking at best responses:

$$
\begin{aligned}
u_{1}(\rho, \sigma) & =80 p q+100(p(1-q)+q(1-p))+60(1-q)(1-p) \\
& =20(3+2 p+2 q-3 p q) \\
& =20(p(2-3 q)+3+2 q)
\end{aligned}
$$

We immediately see that:

- If $q<\frac{2}{3}$ then player 1 s best response is to choose $p=1$.
- If $q>\frac{2}{3}$ then player 1 s best response is to choose $p=0$.
- If $q=\frac{2}{3}$ then player 1 s best response is to play any mixed strategy.

Similarly we have:

$$
\begin{aligned}
u_{2}(\rho, \sigma) & =-(80 p q+100(p(1-q)+q(1-p))+60(1-q)(1-p)) \\
& =-(20(3+2 p+2 q-3 p q)) \\
& =20(q(3 p-2)-3-2 p)
\end{aligned}
$$

and we have:

- If $p<\frac{2}{3}$ then player 1 s best response is to choose $q=0$.
- If $p>\frac{2}{3}$ then player 1 s best response is to choose $q=1$.
- If $p=\frac{2}{3}$ then player 1 s best response is to play any mixed strategy.

The only strategies that are best responses to each other is $\rho=\sigma=\left(\frac{2}{3}, \frac{1}{3}\right)$.
5. Using the equality of payoffs theorem identify all the Nash equilibria for the following games: (a)

	s_{1}	s_{2}
r_{1}	$(0,0)$	$(2,1)$
r_{2}	$(1,2)$	$(0,0)$

The pure Nash equilibria are given by $\left(r_{2}, s_{1}\right)$ and $\left(r_{1}, s_{2}\right)$. Consider the mixed strategies $\rho=(p, 1-p)$ and $\sigma=(q, 1-q)$. By the equality of payoff theorem we have:

$$
u_{1}\left(r_{1}, \sigma\right)=u_{1}\left(r_{2}, \sigma\right)
$$

and

$$
u_{2}\left(\rho, s_{1}\right)=u_{2}\left(\rho, s_{2}\right)
$$

The first equation is equivalent to:

$$
2(1-q)=q
$$

which gives $q=\frac{2}{3}$. Similarly we get $p=\frac{2}{3}$. Thus $\rho=\sigma=\left(\frac{2}{3}, \frac{1}{3}\right)$.

	s_{1}	s_{2}
r_{1}	$(3,3)$	$(3,2)$
r_{2}	$(2,2)$	$(5,6)$
r_{3}	$(0,3)$	$(6,1)$

The pure Nash equilibria is $\left(r_{1}, s_{1}\right)$. Consider the mixed strategies $\rho=(p, q, 1-p-q)$ and $\sigma=(u, 1-u)$. The difficult part of this problem is to identify the various different supports that ρ may have (it is obvious that the size of the support of σ is 2). Let us first consider supports of size 2 :

- Assume that the support of ρ is $\left\{r_{1}, r_{2}\right\}$:

Using the equality of payoffs theorem we have:

$$
u_{1}\left(r_{1}, \sigma\right)=u_{1}\left(r_{2}, \sigma\right)
$$

and

$$
u_{2}\left(\rho, s_{1}\right)=u_{2}\left(\rho, s_{2}\right)
$$

this gives:

$$
u_{1}\left(r_{1}, \sigma\right)=u_{1}\left(r_{2}, \sigma\right) \Rightarrow 3(u+1-u)=2 u+5(1-u) \Rightarrow u=\frac{2}{3}
$$

and (recalling that in this case we have $\rho=(p, 1-p, 0)$)

$$
u_{2}\left(\rho, s_{1}\right)=u_{2}\left(\rho, s_{2}\right) \Rightarrow 3 p+2(1-p)=2 p+6(1-p) \Rightarrow p=\frac{4}{5}
$$

Thus this support gives the mixed Nash equilibium: $\left(\left\{\frac{4}{5}, \frac{1}{5}, 0\right\},\left\{\frac{2}{3}, \frac{1}{3}\right\}\right)$

- Assume that the support of ρ is $\left\{r_{2}, r_{3}\right\}$:

Using the equality of payoffs theorem we have:

$$
u_{1}\left(r_{2}, \sigma\right)=u_{1}\left(r_{3}, \sigma\right)
$$

and

$$
u_{2}\left(\rho, s_{1}\right)=u_{2}\left(\rho, s_{2}\right)
$$

this gives:

$$
u_{1}\left(r_{2}, \sigma\right)=u_{1}\left(r_{3}, \sigma\right) \Rightarrow 2 u+5(1-u)=0 u+6(1-u) \Rightarrow u=\frac{1}{3}
$$

and (recalling that in this case we have $\rho=(0, q, 1-q))$

$$
u_{2}\left(\rho, s_{1}\right)=u_{2}\left(\rho, s_{2}\right) \Rightarrow 3 q+3(1-q)=6 q+(1-q) \Rightarrow q=\frac{1}{3}
$$

Thus this support gives the mixed Nash equilibium: $\left(\left\{0, \frac{1}{3}, \frac{2}{3}\right\},\left\{\frac{1}{3}, \frac{2}{3}\right\}\right)$

- Assume that the support of ρ is $\left\{r_{1}, r_{3}\right\}$:

Using the equality of payoffs theorem we have:

$$
u_{1}\left(r_{1}, \sigma\right)=u_{1}\left(r_{3}, \sigma\right)
$$

and

$$
u_{2}\left(\rho, s_{1}\right)=u_{2}\left(\rho, s_{2}\right)
$$

this gives:

$$
u_{1}\left(r_{1}, \sigma\right)=u_{1}\left(r_{3}, \sigma\right) \Rightarrow 3 u+3(1-u)=0 u+6(1-u) \Rightarrow u=\frac{1}{2}
$$

and (recalling that in this case we have $\rho=(p, 0,1-p)$)

$$
u_{2}\left(\rho, s_{1}\right)=u_{2}\left(\rho, s_{2}\right) \Rightarrow 3 p+3(1-p)=2 p+(1-p) \Rightarrow p=2
$$

However, this last value is not consistent with probabilities! Thus, this support does not have a Nash equilibrium.

We are left with having to consider one last support: $\left\{r_{1}, r_{2}, r_{3}\right\}$. It should be apparent that this case will simplify to one of the previous cases. Thus, we have found all the Nash equilibria:

$$
\left(r_{1}, s_{1}\right),\left(\left\{\frac{4}{5}, \frac{1}{5}, 0\right\},\left\{\frac{2}{3}, \frac{1}{3}\right\}\right) \text { and }\left(\left\{0, \frac{1}{3}, \frac{2}{3}\right\},\left\{\frac{1}{3}, \frac{2}{3}\right\}\right)
$$

6. (a) Assuming "walking in to each other" gives both players a utility of -1 and "avoiding each other" a utility of 1 , the bi matrix representation of this game is:

	L	R
L	$(1,1)$	$(-1,-1)$
R	$(-1,-1)$	$(1,1)$

where $L, ; R$ represent the step left and right strategies respectively.
(b) Using best responses we have:

	L	R
L	$(\underline{1}, \underline{1})$	$(-1,-1)$
R	$(-1,-1)$	$(\underline{1}, \underline{1})$

thus the two pure Nash equilibria are $\{L, L\}$ and $\{R, R\}$.
(c) Assume player 1, plays the mixed strategy $\rho=(p, 1-p)$ and player 2 plays the mixed strategy $\sigma=(q, 1-q)$. By the equality of payoffs theorem we have:

$$
\begin{aligned}
u_{1}(L, \sigma) & =u_{1}(R, \sigma) & & \text { and }
\end{aligned} r u_{2}(\rho, L)=u_{2}(\rho, R)
$$

thus $p=q=\frac{1}{2}$ The mixed Nash equilibria is $\left\{\left(\frac{1}{2}, \frac{1}{2}\right),\left(\frac{1}{2}, \frac{1}{2}\right)\right\}$

