Game Theory Exercise Sheet SOLUTIONS

1.

Г						5	³ 1	s_2	Ĺ
	s_1	s_2	s_3		r	. (7	-2)	(4, 0)	Ĺ
	$r_1 \mid (6,3)$	(2,2)	(2,2)		/	$\frac{1}{1}$	<u> </u>	$(\underline{\pm}, \underline{0})$	ł
ŀ	$\frac{1}{r_{-}}$ (4.0)	(0,3)	(4,5)		r	$_{2} (1,$	-5) ((0, -4)	
ŀ	72 (4,0)	(0,3)	$(\underline{4}, \underline{5})$		r	₃ (4.	-1) ((3, -5)	
	$r_3 \mid (2,3)$	$(\underline{3},\underline{4})$	(3,2)				$\frac{-}{7}$	(4 - 5)	
					1	4 (0,	-1) ($(\underline{4}, \underline{-5})$	J
		(a)					(b)		
			1	ı					
	s_1	s_2	s_3	Г			0		
r_1	(160, 2)	(205, 2)	(44, 2)	1 _		s_1	s_2	S	3
• 1	(175, 1)	$(\underline{=},\underline{=})$	$(, \underline{=})$	-	$r_1 \mid ($	(0, 0)	(-1, 1)	$1) \mid (1, \cdot$	-1)
r_2	(175, 1)	(180, .5)	(43, <u>3</u>)	ļ	r_0 ((-1)	(0, 0) (-1)	1
r_3	(201,3)	(204, 4)	(50, 10)	-	12 (-	<u>-, -)</u>	(0,0)	$\frac{1}{1}$ (0	$\frac{\cdot, \cdot}{0}$
r.	(120 4)	(107.6)	(40.2)		r_3 (-	-1, 1)	(1, -)	1) (0,	, 0)
14	(120, 4)	$(107, \underline{0})$	(45, 2)	J			(1)		
		(c)					(d)		

1

Since the number of Nash Equilibria for any given game is odd, we expect to not have identified all equilibria for (b), (c) and (d).

2. The bi-matrix representation is given by:

	100	99	98		3	2
100	(100, 100)	(97, 101)	(96, 100)		(1,5)	(0, 4)
99	(101, 97)	(99, 99)	(96, 100)		(1,5)	(0, 4)
98	(100, 96)	(100, 96)	(98, 98)		(1,5)	(0, 4)
:				·	:	••••
3	(5, 1)	(5,1)	(5,1)		(3,3)	(0, 4)
2	(4, 0)	(4, 0)	(4, 0)		(4, 0)	(2, 2)

This game is immediate to solve with dominance and so the Nash equilibrium is (2, 2).

3. We have the bi-matrix game representation:

	R	P	S
R	(0, 0)	(-1,1)	(1, -1)
P	(1, -1)	(0, 0)	(-1,1)
S	(-1,1)	(1, -1)	(0,0)

There is no pure Nash equilibrium and it is immediate to see that no mixed strategy will have support of size 2. Indeed, assume that a mixed strategy for player 1 does not play "scissors". Player 2 would have an immediate benefit of playing the pure strategy "paper" (as he'll never lose). This can be shown mathematically.

Thus the mixed strategy for player 1, ρ , will be of the form:

$$\rho = (p, q, 1 - p - q)$$

The mixed strategy for player 2, σ , will be of the form:

$$\sigma = (u, v, 1 - u - v)$$

Using the equality of payoffs theorem, we have:

$$u_1(R,\sigma) = u_1(S,\sigma) = u_1(T,\sigma) \tag{1}$$

and

$$u_2(\rho, R) = u_2(\rho, S) = u_2(\rho, T)$$
(2)

We have:

$$u_{1}(R,\sigma) = -v + 1 - u - v (a)$$

$$u_{1}(P,\sigma) = u - 1 + u + v (b)$$

$$u_{1}(S,\sigma) = -u + v (c)$$

(3)

Combining (1) and (3) gives:

$$(a) = (b) \Rightarrow 3u + 3v = 2$$
$$(a) = (c) \Rightarrow 3v = 1$$
$$(b) = (c) \Rightarrow 3u = 1$$

Thus $\sigma = (\frac{1}{3}, \frac{1}{3}, \frac{1}{3})$ as expected. A similar approach using (3) gives the expected result for ρ .

4. Recall:

	Attack Bomber 1	Attack Bomber 2
Transport with Bomber 1	(80, -80)	(100, -100)
Transport with Bomber 2	(100, -100)	(60, -60)

There is clearly no pure Nash equilibria. Let the bombers use bomber 1 with probability p (thus they use bomber 2 with probability 1-p). We denote the mixed strategy of the bombers by $\rho = \{p, 1-p\}$. Let the fighter attack bomber 1 with probability q (thus the fighter attacks bomber 2 with probability 1-q). We denote the mixed strategy of the fighter by $\sigma = \{q, 1-q\}$. We could use the equality of payoffs theorem to solve this problem. Let us however, consider a direct approach by looking at best responses:

$$u_1(\rho, \sigma) = 80pq + 100(p(1-q) + q(1-p)) + 60(1-q)(1-p)$$

= 20(3 + 2p + 2q - 3pq)
= 20(p(2-3q) + 3 + 2q)

We immediately see that:

- If $q < \frac{2}{3}$ then player 1s best response is to choose p = 1.
- If $q > \frac{2}{3}$ then player 1s best response is to choose p = 0.
- If $q = \frac{2}{3}$ then player 1s best response is to play any mixed strategy.

Similarly we have:

$$u_2(\rho, \sigma) = -(80pq + 100(p(1-q) + q(1-p)) + 60(1-q)(1-p))$$

= -(20(3 + 2p + 2q - 3pq))
= 20(q(3p - 2) - 3 - 2p)

and we have:

- If $p < \frac{2}{3}$ then player 1s best response is to choose q = 0.
- If $p > \frac{2}{3}$ then player 1s best response is to choose q = 1.
- If $p = \frac{2}{3}$ then player 1s best response is to play any mixed strategy.

The only strategies that are best responses to each other is $\rho = \sigma = \left(\frac{2}{3}, \frac{1}{3}\right)$.

5. Using the equality of payoffs theorem identify all the Nash equilibria for the following games: (a)

	s_1	s_2
r_1	(0, 0)	(2,1)
r_2	(1,2)	(0, 0)

The pure Nash equilibria are given by (r_2, s_1) and (r_1, s_2) . Consider the mixed strategies $\rho = (p, 1-p)$ and $\sigma = (q, 1-q)$. By the equality of payoff theorem we have:

$$u_1(r_1,\sigma) = u_1(r_2,\sigma)$$

and

$$u_2(\rho, s_1) = u_2(\rho, s_2)$$

The first equation is equivalent to:

$$2(1-q) = q$$

which gives $q = \frac{2}{3}$. Similarly we get $p = \frac{2}{3}$. Thus $\rho = \sigma = (\frac{2}{3}, \frac{1}{3})$. (b)

	s_1	s_2
r_1	(3,3)	(3, 2)
r_2	(2,2)	(5, 6)
r_3	(0,3)	(6, 1)

The pure Nash equilibria is (r_1, s_1) . Consider the mixed strategies $\rho = (p, q, 1 - p - q)$ and $\sigma = (u, 1 - u)$. The difficult part of this problem is to identify the various different supports that ρ may have (it is obvious that the size of the support of σ is 2). Let us first consider supports of size 2: • Assume that the support of ρ is $\{r_1, r_2\}$: Using the equality of payoffs theorem we have:

$$u_1(r_1,\sigma) = u_1(r_2,\sigma)$$

and

$$u_2(\rho, s_1) = u_2(\rho, s_2)$$

this gives:

$$u_1(r_1, \sigma) = u_1(r_2, \sigma) \Rightarrow 3(u+1-u) = 2u + 5(1-u) \Rightarrow u = \frac{2}{3}$$

and (recalling that in this case we have $\rho = (p, 1 - p, 0)$)

$$u_2(\rho, s_1) = u_2(\rho, s_2) \Rightarrow 3p + 2(1-p) = 2p + 6(1-p) \Rightarrow p = \frac{4}{5}$$

Thus this support gives the mixed Nash equilibium: $\left(\left\{\frac{4}{5}, \frac{1}{5}, 0\right\}, \left\{\frac{2}{3}, \frac{1}{3}\right\}\right)$

• Assume that the support of ρ is $\{r_2, r_3\}$: Using the equality of payoffs theorem we have:

$$u_1(r_2,\sigma) = u_1(r_3,\sigma)$$

and

$$u_2(\rho, s_1) = u_2(\rho, s_2)$$

this gives:

$$u_1(r_2,\sigma) = u_1(r_3,\sigma) \Rightarrow 2u + 5(1-u) = 0u + 6(1-u) \Rightarrow u = \frac{1}{3}$$

and (recalling that in this case we have $\rho = (0, q, 1 - q)$)

$$u_2(\rho, s_1) = u_2(\rho, s_2) \Rightarrow 3q + 3(1-q) = 6q + (1-q) \Rightarrow q = \frac{1}{3}$$

Thus this support gives the mixed Nash equilibium: $\left(\left\{0, \frac{1}{3}, \frac{2}{3}\right\}, \left\{\frac{1}{3}, \frac{2}{3}\right\}\right)$

• Assume that the support of ρ is $\{r_1, r_3\}$: Using the equality of payoffs theorem we have:

$$u_1(r_1,\sigma) = u_1(r_3,\sigma)$$

and

$$u_2(\rho, s_1) = u_2(\rho, s_2)$$

this gives:

$$u_1(r_1,\sigma) = u_1(r_3,\sigma) \Rightarrow 3u + 3(1-u) = 0u + 6(1-u) \Rightarrow u = \frac{1}{2}$$

and (recalling that in this case we have $\rho = (p, 0, 1 - p)$)

$$u_2(\rho, s_1) = u_2(\rho, s_2) \Rightarrow 3p + 3(1-p) = 2p + (1-p) \Rightarrow p = 2$$

However, this last value is not consistent with probabilities! Thus, this support does not have a Nash equilibrium.

We are left with having to consider one last support: $\{r_1, r_2, r_3\}$. It should be apparent that this case will simplify to one of the previous cases. Thus, we have found all the Nash equilibria:

$$(r_1, s_1), \left(\left\{\frac{4}{5}, \frac{1}{5}, 0\right\}, \left\{\frac{2}{3}, \frac{1}{3}\right\}\right) \text{ and } \left(\left\{0, \frac{1}{3}, \frac{2}{3}\right\}, \left\{\frac{1}{3}, \frac{2}{3}\right\}\right)$$

6. (a) Assuming "walking in to each other" gives both players a utility of -1 and "avoiding each other" a utility of 1, the bi matrix representation of this game is:

	L	R
L	(1, 1)	(-1, -1)
R	(-1, -1)	(1, 1)

where L, R represent the step left and right strategies respectively.

(b) Using best responses we have:

	L	R
L	$(\underline{1},\underline{1})$	(-1, -1)
R	(-1, -1)	$(\underline{1},\underline{1})$

thus the two pure Nash equilibria are $\{L, L\}$ and $\{R, R\}$.

(c) Assume player 1, plays the mixed strategy $\rho = (p, 1 - p)$ and player 2 plays the mixed strategy $\sigma = (q, 1 - q)$. By the equality of payoffs theorem we have:

$$u_1(L,\sigma) = u_1(R,\sigma) \quad \text{and} \quad u_2(\rho,L) = u_2(\rho,R)$$

$$q + (1-q)(-1) = q(-1) + (1-q) \quad \text{and} \quad p + (1-p)(-1) = p(-1) + 1 - p$$

$$q = \frac{1}{2} \quad \text{and} \quad p = \frac{1}{2}$$

thus $p = q = \frac{1}{2}$ The mixed Nash equilibria is $\left\{ \left(\frac{1}{2}, \frac{1}{2}\right), \left(\frac{1}{2}, \frac{1}{2}\right) \right\}$