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1.

s1 s2 s3
r1 (6, 3) (2, 2) (2, 2)
r2 (4, 0) (0, 3) (4, 5)
r3 (2, 3) (3, 4) (3, 2)

s1 s2
r1 (7,�2) (4, 0)
r2 (1,�5) (0,�4)
r3 (4,�1) (3,�5)
r4 (6,�7) (4,�5)

(a) (b)

s1 s2 s3
r1 (160, 2) (205, 2) (44, 2)
r2 (175, 1) (180, .5) (45, 5)
r3 (201, 3) (204, 4) (50, 10)
r4 (120, 4) (107, 6) (49, 2)

s1 s2 s3
r1 (0, 0) (�1, 1) (1,�1)
r2 (1,�1) (0, 0) (�1, 1)
r3 (�1, 1) (1,�1) (0, 0)

(c) (d)

Since the number of Nash Equilibria for any given game is odd, we expect to not have
identified all equilibria for (b), (c) and (d).

2. The bi-matrix representation is given by:

100 99 98 . . . 3 2
100 (100, 100) (97, 101) (96, 100) . . . (1, 5) (0, 4)
99 (101, 97) (99, 99) (96, 100) . . . (1, 5) (0, 4)
98 (100, 96) (100, 96) (98, 98) . . . (1, 5) (0, 4)
... . . . . . . . . .

. . .
...

...
3 (5, 1) (5, 1) (5, 1) . . . (3, 3) (0, 4)
2 (4, 0) (4, 0) (4, 0) . . . (4, 0) (2, 2)

This game is immediate to solve with dominance and so the Nash equilibrium is (2, 2).

3. We have the bi-matrix game representation:

R P S
R (0, 0) (�1, 1) (1,�1)
P (1,�1) (0, 0) (�1, 1)
S (�1, 1) (1,�1) (0, 0)

There is no pure Nash equilibrium and it is immediate to see that no mixed strategy
will have support of size 2. Indeed, assume that a mixed strategy for player 1 does not
play “scissors”. Player 2 would have an immediate benefit of playing the pure strategy
“paper” (as he’ll never lose). This can be shown mathematically.

Thus the mixed strategy for player 1, ⇢, will be of the form:
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⇢ = (p, q, 1� p� q)

The mixed strategy for player 2, �, will be of the form:

� = (u, v, 1� u� v)

Using the equality of payo↵s theorem, we have:

u1(R, �) = u1(S, �) = u1(T, �) (1)

and
u2(⇢, R) = u2(⇢, S) = u2(⇢, T ) (2)

We have:

u1(R, �) = �v + 1� u� v (a)

u1(P, �) = u� 1 + u+ v (b)

u1(S, �) = �u+ v (c)

(3)

Combining (1) and (3) gives:

(a) = (b) ) 3u+ 3v = 2

(a) = (c) ) 3v = 1

(b) = (c) ) 3u = 1

Thus � =
�
1
3 ,

1
3 ,

1
3

�
as expected. A similar approach using (3) gives the expected result

for ⇢.

4. Recall:

Attack Bomber 1 Attack Bomber 2
Transport with Bomber 1 (80,�80) (100,�100)
Transport with Bomber 2 (100,�100) (60,�60)

There is clearly no pure Nash equilibria. Let the bombers use bomber 1 with probability
p (thus they use bomber 2 with probability 1�p). We denote the mixed strategy of the
bombers by ⇢ = {p, 1 � p}. Let the fighter attack bomber 1 with probability q (thus
the fighter attacks bomber 2 with probability 1� q). We denote the mixed strategy of
the fighter by � = {q, 1� q}. We could use the equality of payo↵s theorem to solve this
problem. Let us however, consider a direct approach by looking at best responses:

u1(⇢, �) = 80pq + 100(p(1� q) + q(1� p)) + 60(1� q)(1� p)

= 20(3 + 2p+ 2q � 3pq)

= 20(p(2� 3q) + 3 + 2q)

We immediately see that:
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• If q < 2
3 then player 1s best response is to choose p = 1.

• If q > 2
3 then player 1s best response is to choose p = 0.

• If q = 2
3 then player 1s best response is to play any mixed strategy.

Similarly we have:

u2(⇢, �) = �(80pq + 100(p(1� q) + q(1� p)) + 60(1� q)(1� p))

= �(20(3 + 2p+ 2q � 3pq))

= 20(q(3p� 2)� 3� 2p)

and we have:

• If p < 2
3 then player 1s best response is to choose q = 0.

• If p > 2
3 then player 1s best response is to choose q = 1.

• If p = 2
3 then player 1s best response is to play any mixed strategy.

The only strategies that are best responses to each other is ⇢ = � =
�
2
3 ,

1
3

�
.

5. Using the equality of payo↵s theorem identify all the Nash equilibria for the following
games: (a)

s1 s2
r1 (0, 0) (2, 1)
r2 (1, 2) (0, 0)

The pure Nash equilibria are given by (r2, s1) and (r1, s2). Consider the mixed strategies
⇢ = (p, 1� p) and � = (q, 1� q). By the equality of payo↵ theorem we have:

u1(r1, �) = u1(r2, �)

and
u2(⇢, s1) = u2(⇢, s2)

The first equation is equivalent to:

2(1� q) = q

which gives q = 2
3 . Similarly we get p = 2

3 . Thus ⇢ = � =
�
2
3 ,

1
3

�
.

(b)

s1 s2
r1 (3, 3) (3, 2)
r2 (2, 2) (5, 6)
r3 (0, 3) (6, 1)

The pure Nash equilibria is (r1, s1). Consider the mixed strategies ⇢ = (p, q, 1� p� q)
and � = (u, 1�u). The di�cult part of this problem is to identify the various di↵erent
supports that ⇢ may have (it is obvious that the size of the support of � is 2). Let us
first consider supports of size 2:
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• Assume that the support of ⇢ is {r1, r2}:
Using the equality of payo↵s theorem we have:

u1(r1, �) = u1(r2, �)

and
u2(⇢, s1) = u2(⇢, s2)

this gives:

u1(r1, �) = u1(r2, �) ) 3(u+ 1� u) = 2u+ 5(1� u) ) u =
2

3

and (recalling that in this case we have ⇢ = (p, 1� p, 0))

u2(⇢, s1) = u2(⇢, s2) ) 3p+ 2(1� p) = 2p+ 6(1� p) ) p =
4

5

Thus this support gives the mixed Nash equilibium:
��

4
5 ,

1
5 , 0

 
,
�

2
3 ,

1
3

 �

• Assume that the support of ⇢ is {r2, r3}:
Using the equality of payo↵s theorem we have:

u1(r2, �) = u1(r3, �)

and
u2(⇢, s1) = u2(⇢, s2)

this gives:

u1(r2, �) = u1(r3, �) ) 2u+ 5(1� u) = 0u+ 6(1� u) ) u =
1

3

and (recalling that in this case we have ⇢ = (0, q, 1� q))

u2(⇢, s1) = u2(⇢, s2) ) 3q + 3(1� q) = 6q + (1� q) ) q =
1

3

Thus this support gives the mixed Nash equilibium:
��

0, 13 ,
2
3

 
,
�

1
3 ,

2
3

 �

• Assume that the support of ⇢ is {r1, r3}:
Using the equality of payo↵s theorem we have:

u1(r1, �) = u1(r3, �)

and
u2(⇢, s1) = u2(⇢, s2)

this gives:

u1(r1, �) = u1(r3, �) ) 3u+ 3(1� u) = 0u+ 6(1� u) ) u =
1

2

and (recalling that in this case we have ⇢ = (p, 0, 1� p))

u2(⇢, s1) = u2(⇢, s2) ) 3p+ 3(1� p) = 2p+ (1� p) ) p = 2

However, this last value is not consistent with probabilities! Thus, this support
does not have a Nash equilibrium.
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We are left with having to consider one last support: {r1, r2, r3}. It should be apparent
that this case will simplify to one of the previous cases. Thus, we have found all the
Nash equilibria:

(r1, s1),

✓⇢
4

5
,
1

5
, 0

�
,

⇢
2

3
,
1

3

�◆
and

✓⇢
0,

1

3
,
2

3

�
,

⇢
1

3
,
2

3

�◆

6. (a) Assuming “walking in to each other” gives both players a utility of �1 and “avoid-
ing each other” a utility of 1, the bi matrix representation of this game is:

L R
L (1, 1) (�1,�1)
R (�1,�1) (1, 1)

where L, ;R represent the step left and right strategies respectively.

(b) Using best responses we have:

L R
L (1, 1) (�1,�1)
R (�1,�1) (1, 1)

thus the two pure Nash equilibria are {L,L} and {R,R}.
(c) Assume player 1, plays the mixed strategy ⇢ = (p, 1 � p) and player 2 plays the

mixed strategy � = (q, 1� q). By the equality of payo↵s theorem we have:

u1(L, �) = u1(R, �) and u2(⇢, L) = u2(⇢, R)

q + (1� q)(�1) = q(�1) + (1� q) and p+ (1� p)(�1) = p(�1) + 1� p

q = 1
2 and p = 1

2

thus p = q = 1
2 The mixed Nash equilibria is

��
1
2 ,

1
2

�
,
�
1
2 ,

1
2

� 
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