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Non-Probabilistic Decision Making
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Decision Analysis

Decision Analysis refers to a set of methodologies based on
expected values, maximin, and related criteria that are used to
select the best alternative when a decision maker is faced with

uncertainty.
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What is the best decision?

Suppose we own a large plot of land that may contain oil. The
present value of the land is 10 million. It costs 20 million to drill
for oil. If oil is found then we expect to earn 80 million, but if no
oil is found then we can only sell the land for 5 million.

We can either sell the land or drill for oil. There are two possible
states of the land (oily or dry), so there are four possible outcomes.
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What is the best decision?

Four possible outcomes:

Oily Dry
Drill 80-20=60 5-20=-15
Sell 10 10

� 3 approaches to solving this problem.
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MaxMax Payo↵ approach

This approach finds the best case scenario. For each decision we
identify the best outcome (maximum payo↵) over all possible
states. We then find the maximum of these maximum payo↵s.

Oily Dry Max
Drill 60 -15 60
Sell 10 10 10
Max 60
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MaxMin Payo↵ approach

This approach finds the best worst case scenario. For each decision
we identify the worst outcome (minimum payo↵) over all possible
states. We then find the maximum of these minimum payo↵s.

Oily Dry Min
Drill 60 -15 -15
Sell 10 10 10
Max 10
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MinMax Regret approach

This approach first identifies the regret relevant to each decision.
For each decision we identify the distance from the best possible
decision for a particular outcome. We then find the minimum of
these maximum regrets.

Oily Dry Oily Regret Dry Regret Max Regret
Drill 60 -15 0 25 25
Sell 10 10 50 0 50
Min 25
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Non-Probabilistic Decision Making - Summary

3 approaches:

• Maxmax (risk-seeking)

• Maxmin (risk-averse)

• Minmax regret (risk-neutral)

None of these approaches take in to account the likelihood of an
outcome!
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Decision Making Under Uncertainty
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Extra Information

Comparison with nearby land tells us that the chance (prior
probability) of finding oil is 0.6.
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Maximum likelihood Payo↵ approach

This approach finds the most likely state. For the most likely state
we identify the best decision (maximum payo↵). In this approach
we ignore all the states that are less likely to happen.

Oily Dry Most likely
Drill 80-20=60 5-20=-15 60
Sell 10 10 10

Probability .6 .4
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Maximum expected value Conclusion

This approach (also called the Bayes’ decision rule approach) finds
the best most likely payo↵. We compute the expected payo↵s for
all the possible decisions. We then choose the one with the
maximum expected payo↵.

Oily Dry Expected Payo↵
Drill 80-20=60 5-20=-15 .6(60)+.4(-15)=30
Sell 10 10 .6(10)+.4(10)=10

Probability .6 .4
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A new strategy

Suppose that some oil-drilling company has investigated the land
and suggests the following proposal. The company will provide a
drilling service at a lower cost, with the condition that if there is oil
then the company gets 3

8 of the profit but will not charge at all for
the cost of drilling. If there is no oil found, then we have to pay 2
million for the drilling.
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New pay o↵ matrix

Oily Dry
Drill 80-20=60 5-20=-15
Sell 10 10

Accept O↵er (0.625)80 = 50 5-2=3
Probability .6 .4
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Choosing the best approach

Oily Dry Max Min Max Regret ML EP
Drill 60 -15 60 -15 25 60 30
Sell 10 10 10 10 50 10 10

Accept O↵er 50 3 50 3 10 50 31.2
Probability .6 .4
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Conclusion

• If the MaxMax approach is used then the optimal decision is
to Drill. (high risk)

• If the MaxMin approach is used then the optimal decision is
to sell the land directly. (risk averse)

• If the MinMax Regret approach is used then the optimal
decision is to accept the o↵er. (risk neutral)

• If the maximum likelihood approach is used then the optimal
decision is to drill without accepting the o↵er. (high risk)

• If we apply the maximum expected value approach, the
optimal decision is to drill whilst accepting the o↵er. (risk
neutral)
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Bayes’ Theorem
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Cause of accidents

Consider the following two events:

• A: There is an obstacle on the road.

• B : I have an accident.

Let P(A) = .3, P(B) = .5 and P(B |A) = 2
3 .

If I’ve had an accident what is the chance that it was caused by an
obstacle on the road?
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Cause of accidents

Consider the following two events:

• A: There is an obstacle on the road.

• B : I have an accident.

Let P(A) = .3, P(B) = .5 and P(B |A) = 2
3 .

If I’ve had an accident what is the chance that it was caused by an
obstacle on the road?

P(A)P(B |A) = P(B)P(A|B)

,

P(A|B) = P(A)P(B |A)
P(B)

=
.32

3

.5
=

2

5
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Bayes’ Theorem

The di�culty of decision making lies with the “uncertainty of
state”. Very often experiments can be done to improve our prior
estimates of the probabilities of each state. The improved
estimates are called posterior probabilities. A useful tool for
calculating posterior probabilities is Bayes’ Theorem:

Theorem
Suppose that A1,A2, . . . ,An are mutually exclusive events and the
union of these events is the entire sample space, then for any other
event B ,

P(Ai | B) = P(Ai )P(B | Ai )
P(B)

= P(Ai )P(B | Ai )
P(A1)P(B | A1)+···+P(An)P(B | An)
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Example

In a nuclear plant, there are 3 main causes of accidents:

• Human error (H):

P(H) = .02, P(E | H) = .01

• Mechanical error (M):

P(M) = .01, P(E | M) = .05

• Natural disaster (D):

P(D) = .001, P(E | D) = .1

The nuclear plant has exploded. What is the probability that it is
due to a mechanical error?

23 / 45



Solution

Recall:
P(H) = .02, P(M) = .01, P(D) = .001

and
P(E | H) = .01, P(E | M) = .05, P(E | D) = .1

thus:

P(M | E ) = P(M)P(E | M)
P(H)P(E | H)+P(M)P(E | M)+P(D)P(E | D)

= .05⇥.01
.01⇥.02+.05⇥.01+.1⇥.001
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Decision Trees

Decision trees are used to calculate expected payo↵s for di↵erent
decisions. We will illustrate this with the following problem. A
company is considering an investment in a certain stock. The
company assesses that the stock has a 60% chance of going up, in
which case they can make a profit of 20. If the stock goes down
they will lose 20.

The company has the option of paying a financial advisor C
thousand for an assessment of the stock (we will allow C to vary).
The advisor is known to be 80% successful at forecasting a stock
increase and 70% successful at forecasting a stock decrease. We
will draw the decision tree for this problem and describe how it is
constructed.

25 / 45



Step 1: Set out Decisions and Variable outcomes

Firstly we set out the possible decisions and variable outcomes.
Decisions are denoted by square boxes and variable outcomes by
circles.
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Step 1: Set out Decisions and Variable outcomes
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Step 2: Calculate the Returns

Next we work out the return for each possible combination of
decisions and outcomes.
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Step 3: Probabilities of Outcomes

Next we work out the the probabilities of each variable outcome

( ). This is done from left to right. Note that all probabilities
are conditional on outcomes to the left.

Let U be the event Stock Goes Up, D the event Stock Goes Down,
Y the event Told: Buy and N the event Told: Don’t Buy. We
have:

P(U) = .6, P(D) = .4, P(Y | U) = .8 ,P(N | D) = .7

To complete the decision tree we need to know
P(Y ), P(N), P(U | Y ) and P(D | N):

P(Y ) = P(Y | U)P(U) + P(Y | D)P(D) = .6

P(N) = 1� P(Y ) = .4
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Step 3: Probabilities of Outcomes

We use Bayes’ Theorem to calculate P(D | Y ) and P(U | N):

P(U | Y ) = .8

P(D | Y ) = .2

P(U | N) = .3

P(D | N) = .7
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Step 3: Probabilities of Outcomes
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Step 4: Expected Returns

Using the conditional probabilities we can calculate the expected

return at each options node ( ), working from right to left.

By choosing the decisions that maximise the expected return, we

can also work out the expected return at each decision node ( ).
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Step 4: Expected Returns
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Example

Consider the following example:

• Decide to not toss a coin and receive 4.
• Toss an unbiased coin :

I heads: receive 10.
I tails: receive nothing.
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Utility functions

37 / 45



Utility Functions

We would like to reflect di↵erent opinions about the value of
certain gain versus uncertain gain, but still be able to make use of
decision trees. We need a way of transforming absolute gain to an
appropriate scale that reflects the decision maker’s preference.
This scale is called a utility function.
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Example

For example consider the utility function: u : R ! R:

u(x) =
p
x
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Utility Functions

3 categories of utility functions:

•
Risk-averse: the utility function is risk-averse if it is concave:

u(x) =
p
x

•
Risk-seeking: the utility function is risk-seeking if it is
convex:

u(x) = x2

•
Risk-neutral: the utility function is risk-neutral if is is linear:

u(x) = x
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Utility Functions
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Choice of utility function

When a utility function is used for decision analysis, the utility
function must be constructed to fit the preferences and values of
the decision maker.
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Munduruku Example

In “Alex’s Adventures in Numberland” by Alex Bellos an account
of the Munduruku tribe is given.

• Indigenous tribe of 7000.

• Brazilian Amazon.
• Language:

I No tense.
I No plurals.
I No words for numbers > 5.
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Numerical Experiment
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Results
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