
Chapter 1 - Introduction

The Environment
SAS may be run in a variety of modes, on this course we will concentrate on the interactive mode which allows users to submit selected portions of SAS code through a graphical user interface (GUI). When opening SAS a variety of windows immediately become visible as shown. Note that the screenshots and accompanying screen casts for this course were produced with SAS 9.3 running on ubuntu 11.10. The look and feel on other operating systems will differ slightly.
[image: images/image21.png] The visible windows are:
1. The explorer window
1. The results window
1. The command window
1. The output window
1. The log window
1. The editor window
We write code directly in the editor window and the roles of the other windows will become clear shortly.
Libraries
The major strength of SAS is its ability to handle huge data sets. SAS does this by storing files in a particular format in spaces called libraries. SAS libraries are important. SAS manipulates data sets once they are converted to SAS data files. These data files are saved in libraries in SAS. They work just like folders (apart from not being able to nest further libraries). If you click on the libraries tab in the explorer window (as shown in in the screenshot) you should see the libraries available to you (as shown in the other screenshot).
[image: images/image58.png] [image: images/image32.png] On my system SAS has already created 6 libraries (this might differ on other versions and operating systems). The Work library which SAS automatically uses if no library is specified (more on this later, it's basically the default library). A very important fact about the Work library is that it is temporary. When SAS is shut down, all the contents of the Work library are deleted. Keeping this in mind, let's move on to creating a new library.
Creating a new library
To create a new library, left click in the explorer window and select "New...". You will see a new window appear as shown. Simply browse to the location on your computer at which you'd like your new library to be stored. Note also to click the "Enable at startup" option which ensures that SAS remembers this library the next time you open up SAS; if this is not selected, the link to the library created will be temporary (and erased when SAS is shut down). Finally make sure you name your library obeying the following rules (for the rest of the notes, I'll assume the library name for this course is mat013):
1. be less than or equal to 8 characters
1. must begin with an underscore or letter
1. remaining characters can be letters, numbers or underscores
[image: images/image57.png]
New library window
Now that we have a library let's import some data!
Importing Data
There are two main ways to import data into SAS:
1. Direct input
1. Importing an external data set (xls, csv etc...)
In practice you will never use the direct input method but let's take a look for completeness (although it is very useful when wanting to quickly test a few things). This will also give us our first experience of the editor window!
Let us create a data set named first_data_set, put it in the mat013 library and include the following data:
Name,AgeBob,23Billy,25
To do so, write the following code in the editor window:
data mat013.first_data_set;input Name $ Age;cards;Bob 23Billy 25;run;
Let's take a look at the screenshot. First of all we see that the program editor automatically includes some syntax colouring (i.e. changes the colour of some of the words that it recognises). In blue in the editor window are the SAS keywords:
1. data which tells SAS that we're about to write a data step which we'll look at a bit closer in the Chapter 3. The keyword data is always followed by the library and the data file (separated by a .) we're creating. If no library is given then SAS will put this file in the Work library.
1. input which tells SAS that we're going to input raw data and what follows is the name of the variables. If a variable is a string then we must include a \$ after the variable name.
1. cards which is the SAS keyword that precedes the raw data. All the entries must be on separate rows.
1. run which is the keyword that tells SAS where the statement ends.
An important thing to remember is that a SAS statement always ends with a ;. Forgetting the ; is a common source of mistakes (and headaches).
[image: images/image60.png] We run this code by highlighting it and pressing the 'running man', clicking on run (or pressing F8 on Windows). It is good practice to always check the log window as soon as any code is run. In the screenshot we see that the log looks good (lines 1-7 don't show any errors) and simply gives some details as to the running of the program.
[image: images/image35.png]
If we now look at the mat013 library in the explorer pane we can see the new data set is in there, double clicking on the data set opens it up.
[image: images/image26.png] [image: images/image42.png] Using direct input is of course not at all realistic when trying to import larger data sets.
Often large data sets will be saved in comma-separated values (csv) format which can be read by most (all?) software. We will import the data set shown (here viewed in a simple text editor).
[image: images/image13.png] We will import this data set in to the mat013 library and call it JJJ using the following code:
proc import datafile="~/JJJ.csv" out=mat013.JJJ dbms=csv replace; getnames=yes;run;
Let's take a look at the screenshot shown. We again see that the program editor automatically includes some syntax colouring (i.e. changes the colour of some of the words that it recognises). In blue in the editor window are the SAS keywords:
1. proc which tells SAS that we're about to write a 'procedure step' which we'll look at a bit closer in the next chapter. The proc keyword is always followed by the name of the particular procedure we're going to use. In this case: import, which is then followed by the statement datafile=path-to-datafile. Following this are various options relating to the import statement.
1. out - this tells SAS the name of the SAS datafile created from the imported file.
1. dbms - this tells SAS the type of file being imported (in our case csv, but can be dlm, xls, etc.). Note that this is not necessary if SAS can recognise the file extension.
1. replace - this tells SAS to replace any SAS datafiles with the same name as specified by out.
1. getnames=yes which, although this is not a SAS keyword, it is a special option for the import statement that allows you to tell SAS to get the variable names from the first row of your external data file.
1. run is the keyword that tells SAS where the statement ends.
[image: images/image62.png] Running the code in the same way as before (highlighting and F8) will create the required datafile as shown.
[image: images/image05.png] [image: images/image31.png] In the following chapters we will learn how to create new data sets from old data sets and as such it may become necessary to export files to csv.
Exporting data sets
We will export our first data set ("mat013.first_dataset") to csv using the following code:
proc export data=mat013.first_data_set outfile="~/Desktop/first_data_set.csv" dbms=csv replace;run;
Let's take a look at the screenshot shown. In blue are the SAS keywords:
[image: images/image56.png]
1. proc which tells SAS that we're about to write a 'procedure step' which we'll look at a bit closer in the next chapter. The proc keyword is always followed by the name of the particular procedure we're going to use. In this case: export, which is then followed by the statement data= followed by the library and name of the SAS data file you want to export. Following this are various options relating to the export statement.
1. outfile - this tells SAS where the exported file should go.
1. dbms - this tells SAS the type of file to create when exporting (in our case csv, but can be dlm, xls, etc...). Note that this is not necessary if SAS can recognise the file extension.
1. replace - this tells SAS to replace any file with the same name as specified by outfile.
1. run is the keyword that tells SAS where the statement ends.
In the next chapter we will see more complex (and potentially useful) procedures.

Chapter 2 - Basic Statistical Procedures

Procedures
In the previous chapter we were introduced to some very basic aspects of SAS:
1. what SAS looks like
1. how to import data into SAS
1. how to export data from SAS
In this chapter we will take a closer look at "procedure steps" which allow us to call a SAS procedure to analyse or process a SAS dataset. In the previous chapter we have already seen two procedure steps:
1. proc import
1. proc export
The procedures we are going to look at in this chapter are:
1. Viewing datasets
1. Summarising the contents of data sets
1. Obtaining summary statistics of data sets
1. Obtaining frequency tables
1. Obtaining linear models
1. Plotting data
The general syntax for these procedures in SAS is given below:
proc [NAME OF PROCEDURE] data=[NAME OF SAS DATA SET];[Options for Procedure being used]run;
Some of the options that can be used in a procedure step include:
1. "var" - which tells SAS which variables are to be processed.
1. "by" - which tells SAS to compartementalize the procedure for each different value of the named variable(s). The data set must first be sorted by those variables.
1. "where" - select only those observations for which the expression is true.
A list of procedures
Utility procedures
We have already seen that we can open and view a data set by simply double clicking on the data set in the explorer window. A data set can also be viewed by using the "print" procedure.
We'll do this by considering the MMM data file shown (imported using an import procedure).
[image: images/image41.png] The following code will run the "print" procedure:
proc print data=mat013.mmm;run;
which outputs the data set to the output window as shown.
[image: images/image24.png] At times we might not want to open the data set but simply gain some information as to what is in the data set. This is equivalent to checking the label on a present without unwrapping it. We do this using the "contents" procedure.
proc contents data=mat013.mmm;run;
This outputs summary information as shown.
[image: images/image59.png] A procedure that will be needed, when using more complex procedures and larger data sets, is the "sort" procedure.
proc sort data=mat013.mmm;by age;run;
Note that this procedure makes use of the "by" statement which tells SAS which variable to sort our observations on (in this case the variable age). Recall that the data set is not sorted. If we run the above "sort" procedure, at first nothing seems to happen, however if we view the data set again (using proc print or otherwise) we see (as shown) that the data set is now sorted.
[image: images/image06.png] Important: If you have the mat013.mmm data set open in browser mode (i.e. having double clicked on the data set in the explorer window) when running the "sort" procedure, checking your log shows you an error as shown. Always close any browser windows when processing a data set - or use the "print" procedure!
[image: images/image20.png] ### Descriptive statistics
In this section we will go over some of the procedures needed to obtain descriptive statistics.
The first procedure we consider is the "means" procedure. We can use the following code to obtain various summary statistics relating to the age variables of the mat013.mmm dataset.
proc means data=mat013.mmm;var age;run;
We can specify the particular summary statistics we want (if none are specified a default set is displayed).
proc means data=mat013.mmm N mean std min max sum var css uss;var age;run;
We can also choose to display the summary statistics for more than one variable
proc means data=mat013.mmm N mean std min max sum var css uss;var age height_in_metres;run;
We can compartmentalise our data results using the "by" statement. Note that the data set must be sorted on the same variable.
proc means data=mat013.mmm N mean std min max sum var css uss;var age height_in_metres;by sex;run;
Another way of compartmentalising results is using the "class" statement. This is very similar to the "by" statement and does not require the prior sorting of your data set.
proc means data=mat013.mmm N mean std min max sum var css uss;var age height_in_metres;class sex;run;
Finally, it's also possible to create a data set from the "means" procedure.
proc means data=mat013.mmm N mean;var age height_in_metres;class sex;output out=summary_of_mmmN(age)=number_of_age_obsmean(age)=average_of_age_obsN(height_in_metres)=number_of_height_obsmean(height_in_metres)=average_height;run;
The above code creates a data set called "summary_of_mmm" in the work library (the default library if no library is specified) with two variables "number_of_obs" and "average_of_obs" which give the number and mean for the observations as calculated by the "means" procedure as shown.
[image: images/image16.png] The "univariate" procedure allows for the calculation of univariate statistics in SAS. The following code will output all the default univariate statistics for all the variables.
proc univariate data=mat013.mmm;run;
We can choose to run the "univariate" procedure on a subset of the variables, using the "var" statement.
proc univariate data=mat013.mmm;var savings_in_pounds;run;
The various outputs of the "univariate" procedure are shown.
[image: images/image10.png] [image: images/image03.png] [image: images/image61.png] [image: images/image53.png] [image: images/image36.png] ### Frequency tables
The "freq" procedure allows us to obtain frequency tables of data sets. As an example, let's consider the dataset shown.
[image: images/image27.png] The most basic "freq" procedure will give the frequencies of all the observations in the data set:
proc freq data=mat013.math_tests;run;
We can specify the variables we want to look at by listing them after the "tables" statement (similar to the var statement for the "means" procedure):
proc freq data=mat013.math_tests;tables teacher pass_fail;run;
If we want to cross tabulate the data then we use a * in between the variables concerned:
proc freq data=mat013.math_tests;tables teacher*pass_fail;run;
The above code gives the table shown.
[image: images/image08.png] Various options can be passed to the "freq" procedure, the simplest of which is shown below:
proc freq data=mat013.math_tests;tables teacher*pass_fail / nocol norow nopercent;run;
Other options include computing a chi square test but we will not worry about that for now.
Correlations
The "corr" procedure can be used to obtain correlations in SAS. The following code is the basic "corr" procedure applied to the mat013.mmm data set which gives the output shown.
proc corr data=mat013.mmm;run;
[image: images/image49.png] If we want to run the "corr" procedure on a subset of the variables then we use the "var" statement:
proc corr data=mat013.mmm;var age savings_in_pounds;run;
[image: images/image22.png]
Linear Models
In this section we'll very briefly see the syntax for some basic linear models in SAS. First of all we'll take a look at linear regression. The following code will run such an analysis on the mat013.jjj data set, checking if there is a linear model of height with predictors weight and savings:
proc reg data=mat013.jjj;model height_in_metres=weight_in_kg savings_in_pounds;run;
[image: images/image12.png] [image: images/image39.png] Looking at the p-value we see that the overall model should not be rejected, however the detailed results show that perhaps we could remove savings from the model.
Analysis of variance (ANOVA) can be done very easily in SAS. We show this using a new data set.
[image: images/image09.png] We will use the "anova" procedure to see if the grades obtained by students depend on their teacher.
proc anova data=mat013.math;class prof;model grade=prof;run;
Note the "class" keyword is needed to state which variable we are using to group on. The results show that there is indeed a difference between groups (further post-hoc tests are needed to investigate which groups differ etc.).
[image: images/image25.png] Another procedure that can be used for a variety of models (including the 2-way anova) is the "glm" (general linear model) procedure. The following code simply reproduces the above results.
proc glm data=mat013.jjj;model height_in_metres=weight_in_kg savings_in_pounds;run;proc glm data=mat013.math;class prof;model grade=prof;run;
Plots and charts
There are various ways to obtain histograms in SAS, the easiest way is to use the "univariate" procedure with the "histogram" option. The following code gives a histogram for the height of individuals in the mat013.jjj dataset as shown.
proc univariate data=mat013.jjj;var height_in_metres;histogram;run;
[image: images/image01.png] There are various ways to obtain scatter plots in SAS, the easiest way is to use the "gplot" procedure. The following code gives a scatter plot for the height of individuals against their weight in the mat013.jjj dataset as shown.
proc gplot data=mat013.jjj;plot height_in_metres*weight_in_kg;run;
[image: images/image28.png] There are various other ways to obtain similar graphs as well as change the look and feel of our graphs. We won't go into this here but you are encouraged to look into it.
Exporting output
We can output results of procedures in SAS using the "output delivery system". The syntax is straightforward and we surround normal SAS code with the "ods" statements to output to various formats (html, pdf, rtf).
ods [format of your choice] file=[Location of file to be output];[Normal SAS code]ods [format of your choice] close;
As an example, the following code creates an html file called "freq_table" in html format stored at the location "~/Desktop" (note that in Window's the / should be a \) as shown.
ods html file="\~/Desktop/freq_table.htm";proc gplot data=mat013.jjj;plot height_in_metres*weight_in_kg;run;ods html close;
[image: images/image17.png] The following code will create a file called "scatter_plot.pdf" in pdf format stored at the location "~/Desktop" (note that in Window's the "/" should be a "") as shown.
ods pdf file="\~/Desktop/scatter_plot.pdf";proc gplot data=mat013.jjj;plot height_in_metres*weight_in_kg;run;ods pdf close;
[image: images/image02.png] The following code will create a file called "regression.rtf" in rtf format (Word, LibreOffice etc.) stored at the location "~/Desktop" (note that in Window's the "/" should be a "") as shown.
ods rtf file="\~/Desktop/regression.rtf";proc reg data=mat013.jjj;model weight_in_kg=height_in_metres;run;ods rtf close;
[image: images/image55.png]

Chapter 3 - Manipulating data

Data steps
A data step is a type of SAS statement that allows you to manipulate SAS data sets. Some of the things we can do include:
1. Copying a data set (with new variables)
1. Concatenating any number of data sets
1. Merging any number of data sets
The following code simply creates a data set in the work library called "j" that is a copy of the data set jjj located in the mat013 library.
data j;set mat013.jjj;run;
To concatenate two data sets (as shown pictorially) we use the following syntax:
data [New Data Set];set A B;run;
[image: images/image00.png] The following code concatenates the jjj and mmm data sets as shown.
data mat013.mmmjjj;set mat013.mmm mat013.jjj;run;
[image: images/image54.png] To merge two data sets (as shown pictorially) we use the following syntax:
data [New Data Set];merge A B;by [Merge Variable]run;
Note that the two data sets must be sorted on the merge variable prior to merging.
[image: images/image19.png] The following code would merge the two data sets first_data_set and other_data_set in the mat013 library as shown.
proc sort data=mat013.first_data_set;by name;run;proc sort data=mat013.other_data_set;by name;run;data mat013.merged_data_set;merge mat013.first_data_set mat013.other_data_set;by name;run;
[image: images/image34.png] Data steps can be used in conjunction with the where statement to select certain variables. For example consider the data set shown.
[image: images/image11.png] The following code selects only the elements of the above data set that start with a D.
data Dwarfs;set Dwarfs;where substr(Name,1,1)="D";run;
The result is shown in (note that the above code makes use of the substr function that we will see later).
[image: images/image45.png]
The program data vector
SAS is able to handle very large data sets because of the way data steps work. In this section we'll explain how it uses the "program data vector" (pdv) to efficiently handle data. The basic steps of compiling a data step are as follows:
1. SAS creates an empty data set.
1. SAS checks the data step for any unrecognized keywords and syntax errors.
1. SAS creates a PDV to store the information for all the variables required from the data step.
1. SAS reads in the data line by line using the PDF.
· (If a "by" statement is used (for example when merging two data sets) the PDF does not empty if there are still observations with the same value of the "by" variable).
1. SAS creates the descriptive portion of the SAS data set (viewable using the "contents" procedure).
An example of how this works with concatenation and an example of how this works with merging is shown.
[image: images/image15.png] [image: images/image30.png]
Creating new variables
Creating new variables using various arithmetic and/or string relationships is relatively straightforward in SAS. The following code creates a new data set call MMM_with_BMI, with a new variable "BMI" as a function of the height and weight variables in the MMM dataset in the mat013 library.
data mat013.MMM_with_BMI;set mat013.MMM;bmi=weight_in_kg/(height_in_metres**2);run;
Some of the arithmetic functions are shown.
[image: images/SAS_math_operators.png] [image: images/SAS_math_functions.png] We can also do operations on strings, the following code replaces the variable "Sex" with the first entry of "Sex" (which gets rid of the Male - M and Female - F issue).
data mat013.MMM_with_BMI;set mat013.MMM;sex=substr(sex,1,1);run;
[image: images/SAS_string_functions.png] It's worth checking the web for a full list of various SAS functions (there are a huge amount of them).
Dropping and keeping variables.
In this section we'll take a quick look at two simple ways of improving the efficiency of a data step. Recalling how SAS handles a data step (using the pdv as described previously), one immediate way of improving efficiency is to ensure that the pdv only "transports" the variables we require. We do this with the "drop" or "keep" statement.
Let us consider the previous example and assume that we want our MMM_with_BMI data set without the weight and height variables. We use a "drop" statement to get rid of those variables:
data mat013.MMM_with_BMI_nhw(drop=weight_in_kg height_in_metres);set mat013.MMM;bmi=weight_in_kg/(height_in_metres**2);run;
Note that the following code would not give the required output as we are trying to drop the variables from the original data set, however we need those variables to calculate the bmi:
data mat013.MMM_with_BMI_nhw;set mat013.MMM(drop=weight_in_kg height_in_metres);bmi=weight_in_kg/(height_in_metres**2);run;
The keep statement (basically) does the same thing as the drop statement but in reverse, by only keeping the variables we have specified. Which one to use depends simply on whether or not you want to drop or keep more variables.
Note that you cannot use a drop statement and a keep statement in the same data step.
The following code will create a data set with just the bmi variable.
data mat013.just_bmi(keep=bmi);set mat013.MMM;bmi=weight_in_kg/(height_in_metres**2);run;
Renaming variables
The following code creates a data set "JJJ" in the work library which is a copy of the "JJJ" dataset in the mat013 library, renaming the "sex" variable to "gender".
data JJJ(rename=(sex=gender));set mat013.JJJ;run;
This can also be used in the set data set:
data JJJ;set mat013.JJJ(rename=(sex=gender));run;
Operations across rows
We have seen in previous sections how to create new variables for any given observation (i.e. across columns of a data set). In this section we see how to create variables across rows. Recalling how the program data vector works, this implies that we must find a way to keep certain entries in the pdv for future calculation.
We will demonstrate this using the birthday_money.csv data set as shown.
[image: images/image38.png] The first such way is to use the "retain" statement. The "retain" statement keeps the last entry for a given variable in the pdv for future calculation. Note that we can give an initial value for a particular variable as shown in the following code (which produces a variable "total" that is a running total of "amount") the output of which is shown.
data bm_analysis;set mat013.birthday_money;retain total 0;total=total+amount;run;
[image: images/image47.png] Another tool for such calculations is the "lagn" function which gives the value of a variable from a certain number n of prior steps. The following code gives two new variables, the yearly difference and 2 yearly difference, the result of which is shown.
data bm_analysis;set mat013.birthday_money;retain total 0;total=total+amount;yearly_diff=amount-lag1(amount);two_yearly_diff=amount-lag2(amount);run;
[image: images/image40.png] The lag functions can be used in much more complex assignments and in fact when simply wanting to calculate a difference there is a quicker way: using the "difn" function as shown in the code below which gives the same result as shown.
data bm_analysis;set mat013.birthday_money;retain total 0;total=total+amount;yearly_diff=dif1(amount);two_yearly_diff=dif2(amount);run;
Handling dates
Dates are handled in a particular way in SAS. Let's consider the csv file shown.
[image: images/image37.png] We have seen in Chapter 1 how to import data using proc import. If we use the normal approach an error would occur. This is due to the confusion associated with our birthday variables (the first 20 rows have the date and month values both less than 12). A further option that can be incorporated in proc import is the number of rows that SAS will "pre-read" to identify the type of variables that are to be imported. This is often an easy way to ensure that SAS recognises dates.
proc import datafile='\~birthdays.csv'out=birthdaysreplace;getnames=yes;guessingrows=25;run;
A proc contents run on the above data set shows that the birthday variable data was imported using the informat DDMMYY10. In other words SAS has recognised that the dates were in that particular format.
[image: images/image50.png] Another approach is to import files in SAS using a data step and the infile statement. When doing this we can tell SAS the format of the data (whether or not it is a string, numerical or date variables).
data birthdays;infile '~/birthdays.csv' dlm=',' firstobs=2;input Name $ Birthday ddmmyy10.;run;
The infile statement tells SAS where the data is located and the 'dlm' statement tells SAS how the file is delimited (in this case with a comma). The 'firstobs' statement tells SAS where the data starts in the file (in this case the second row as the first row is the name of the variables in our data set). The input statement then allows us to tell SAS the names of the variables as well as the format they are in, here we tell SAS that the second variable is to be called 'Birthday' and it is in the ddmmyy8. format.
[image: images/image63.png] The above output might be a bit confusing, this is due to the fact that SAS handles dates as numbers, using the convention that the 1st of January 1960 is the number 0 (this allows for straightforward arithmetic manipulation of dates). The following code imports the data as above and displays the underlying numeric dates in the date9. format.
data birthdays;infile '\~/birthdays.csv' dlm=',' firstobs=2;input Name $ Birthday ddmmyy8.;format Birthday date9.;run;
The output is shown. Note that applying the date9. format only changes the appearance of the data.
[image: images/image51.png] There are various formats that can be used when importing variables (for dates as well as other variables) and subsequently these same formats can be used to display the data if this is required. Searching online quickly finds other SAS formats.

Chapter 4 Programming

Flow control
A huge part of programming (in any language) is the use of so called "conditional statements". We do this in SAS using "if" statements. The following code creates a new variable "age_group" which is "young" if the age is less than 29 and "old" if the age is larger than 29. Note we're also including a keep statement to just have the name and age_group in the new data set.
data age_group(keep= name age_group);set mat013.mmmjjj;if age<30 then age_group='young'; else age_group='old';run;
We can also use this in conjunction with the else if statement as shown below:
data age_group(keep= name age_group);set mat013.mmmjjj;if age<18 then age_group='child'; else if age<30 then age_group='young'; else age_group='old';run;
Note that we can also compare strings as shown with the following code:
data age_group(keep= name age_group);set mat013.mmmjjj;if age<18 then age_group='child'; else if age<30 then age_group='young'; else age_group='old';if substr(Name,1,1)='J ' then data_set='JJJ'; else data_set='MMM';run;
Here are some of the comparison operators that can be used in conjunction with 'if' statements.
[image: images/image29.png] A further important notion in programming is the notion of loops. These are done in SAS using "do" statements. There are four ways the "do" statement is used:
1. do
1. do (iterative)
1. do while
1. do until
The first use allows us to combine several statement into one. This is often used in conjunction with "if" statements:
data age_group(keep= name age_group minor_Y_N);set mat013.mmmjjj;if age<18 then do;age_group='Child';minor_Y_N='Y';end;else do;age_group='Adult';minor_Y_N='N';end;run;
The 'do' statement can be used to push your computer a bit more. The "do iterative statement" allows you to automate various procedures. The following code output the total number of birthday candles that would have been used on everyones birthday cake in the JJJ data set.
data candles(keep= name age candles);set mat013.jjj;candle=0;do k=0 to age;candle=candle+k;end;run;
The last two uses of the 'do' statement are very similar and allow us to iterate "until/while" a particular condition is met.
The do until (expression) statement executes a group of statements until the expression within the brackets is satisfied. The validity of the expression is checked at the end of each loop.
do until (expression);data step commands;end;
The following code outputs the number of even numbers less than or equal to 70, computing each even number and checking whether or not it is more than 70.
data even_numbers;k=0;even=0;do until(even>=70);even=2**k;k=k+1;end;run;
We can do a similar calculation using the do "while" statement. The do while (expression) statement executes a group of statements whilst the expression within the brackets is satisfied. The validity of the expression is checked at the beginning of each loop.
do while (expression);data step commands;end;data even_numbers;k=0;even=0;do while(even<70);even=2**k;k=k+1;end;run;
Note that do iterative statements (also called "do loops") are often used in conjunction with the "output" statement which empties the pdv to the output data set. The following code outputs the variables in the pdv: "k" and "even" at each iteration of the do statement. The output is shown.
data even_numbers;k=0;even=0;do while(even<70);even=2**k;output;k=k+1;end;run;
[image: images/image18.png]
How does SAS compile code?
In this chapter we will see how to program macros in SAS. Macros generate and run code with varying arguments. The macro facility is a tool for extending and customising SAS and for reducing the amount of text you must enter to do common tasks. The macro facility enables you to assign a name to character strings or groups of SAS programming statements. From that point on, you can work with the names rather than with the text itself.
When you submit a SAS macro the Input stack receives content of the program. Word scanner scans each line of the macro for tokens. If a token contains a macro character (a % or a &) that token is sent to the macro compiler. The Macro compiler does its work and places tokens back in the input stack. The token is examined by the word scanner and the process repeats. When the word scanner detects a step boundary it triggers the data step compiler. This process is represented diagrammatically.
[image: images/image48.png] When you submit a macro, it goes first to the macro processor which produces standard SAS code from the macro references (macro code is compiled first). Then SAS compiles and executes your program.
In general the syntax for a macro is as follows:
%macro macro-name <(macro-parameter-list>;… SAS Code...%mend <macro-name>;
The following example creates a macro called "My_plot" which when called will plot a graph of height against weight of the variables in mat013.jjj:
%macro My_plot;proc gplot data=mat013.jjj;plot height_in_metres*weight_in_kg;run;%mend;
To run the macro we call it with the following statement:
%My_plot;
As discussed above, it is possible to pass arguments to a macro. The following code creates a macro "shopping" that will remove a certain quantity "spend" from the variable "life_savings":
%macro shopping(spend);data JJJ_after_shopping(keep= Name Old_savings New_savings);set mat013.jjj;Old_savings=savings_in_pounds;New_savings=saving_in_pounds-&spend;run;%mend;
Note the ampersand "&" which the "word scanner" will recognise, sending "&spend" to the "macro compiler" where it will resolve to whatever value is passed to the macro.
We can define macros with multiple variables. Consider the following modification of the above code which allows for multiple shopping trips:
%macro shopping(spend,trips);data JJJ_after_shopping(keep= Name Old_savings New_savings);set mat013.jjj;Old_savings=savings_in_pounds;New_savings=saving_in_pounds-&trips*&spend;run;%mend;
The above code is using so called "positional" macro parameters. It is possible to also use "keyword" macro parameters as shown in the code below.
%macro shopping(spend=,trips=);data JJJ_after_shopping(keep= Name Old_savings New_savings);set mat013.jjj;Old_savings=savings_in_pounds;New_savings=saving_in_pounds-&trips*&spend;run;%mend;
We can then call the above macro and change the order of the parameters:
%shopping(trips=2,spend=500);
It's also possible to set default values:
%macro shopping(spend=,trips=1);data JJJ_after_shopping(keep= Name Old_savings New_savings);set mat013.jjj;Old_savings=savings_in_pounds;New_savings=saving_in_pounds-&trips*&spend;run;%mend;
Now if we call the macro without giving a value to trips it will take the default value 1.
%shopping(spend=500);
Macro variables
In this section we're going to take a slightly closer look at macro variables. A macro variable is a variable whose value is stored within the macro symbol table. When the macro variable is used in SAS code, SAS substitutes the value of the macro variable into the SAS code. SAS macro variables are distinguished by the "&" sign before the variable name. Note that all SAS macro variables are stored as text strings.
We can experiment with macro variables using the %let statement which allows the construction of macro variables outside of a macro definition. This is the simplest form of a macro statement. It can be placed anywhere in a program, not only inside a Macro. "%let" creates global macro variables. An example of this is shown in the following code which gives the output shown.
%let spend=400;%let trips=500;%macro shopping;data JJJ_after_shopping(keep= Name Old_savings New_savings);set mat013.jjj;Old_savings=savings_in_pounds;New_savings=saving_in_pounds-&trips*&spend;run;%mend;%shopping;
[image: images/image52.png] It's also possible to view (in the log) the values of a macro variable using the "%put" statement. There are two uses for it:
%put <text> ¯o-variable-name;
This outputs some (optional) followed by the value of particular macro variable. The other use is shown below:
%put <_all_ | _global_ | _local_ >;
This will output either all, all the global or all the local macro variables. These statements should allow us to better understand some of the issues related to the resolution of multiple ampersands. Multiple ampersands can be used to allow the value of a macro variable to become another macro variable reference. The macro variable reference will be rescanned until the macro variable is resolved. There are 2 rules to follow:
1. && is a token in its own right and resolves to &
1. Each token is handled independently
The important thing to note here is that a double ampersand "&&" is a token in itself that resolves to a single ampersand "&" (THIS IS IMPORTANT).
[image: images/image44.png] [image: images/image43.png]
SAS Macro programming statements
The 'if' statements and 'do' loops discussed previously work in a very similar way to if statements and do loops within macros. The only modification is that these can be evaluated within the macro compiler before the entire submitted code is resolved. For this to work we need to use the "%if", "%then" and "%else" statements when evaluating a conditional statement on a macro variable. The following code is an example of this:
%macro shopping(spend,trips);data JJJ_after_shopping(keep= Name Old_savings New_savings);set mat013.jjj;%if &spend<0 %then %put Carefull the spend is negative!;%else %put The spend is positive;Old_savings=savings_in_pounds;New_savings=savings_in_pounds-&trips*&spend;run;%mend;
The "%do" statement can be used in conjunction with "%if" statements. The following code creates one of two data sets depending on the sign of the macro variable spend.
%macro shopping(spend,trips);%if &spend<0 %then %do;data JJJ_after_saving(keep= Name Old_savings New_savings);set mat013.jjj;%end;%else %do;data JJJ_after_spending(keep= Name Old_savings New_savings);set mat013.jjj;%end;Old_savings=savings_in_pounds;New_savings=savings_in_pounds-&trips*&spend;run;%mend;
Another use of the %do statement is in iterative statements (as before). The difference being that on this occasion the %do statement creates macro variables. The following code creates various data sets each with a title indexed by a macro variable.
%macro shopping(spend);%do trips=1 %to 10;data JJJ_after_saving_&trips(keep= Name Old_savings New_savings);set mat013.jjj;Old_savings=savings_in_pounds;New_savings=savings_in_pounds-&trips*&spend;run;%end;%mend;
The %do statement can also be used in conjunction with the %while and %until statements.
The way SAS compiles macro code can be an extremely useful tool. For example the following code creates a macro that imports 5 separate csv file:
%macro import;%do i=1 %to 5;proc import datafile="\~/File_&i.csv" out=File_&i dbms=csv replace; getnames=yes;run;%end;%mend;
The output is shown.
[image: images/image04.png]
Macro functions
Since all macro variables are text strings it is not possible to directly perform computations on macro variables that contain numbers. The following code would give an error:
%let var=5**2;%put &var;
One must make use of the following function to be able to evaluate (in the macro compiler) such computations:
%let var=5**2;%put %eval(&var);%put %sysevalf(&var);
The "%sysevalf" function works in a very similar way to the "%eval" but will compute fractions such as 9/2 in the Real numbers (as opposed to eval which would round the result).
Another use of macro functions is when it comes to ignoring certain SAS keywords. The following code puts two different statements to the log.
%let myvar=abc;%put %str(this string is; &myvar);%put %nrstr(this string is; &myvar %let);
The first macro function "%str" ignores the ";" and treats it as a string. The second macro function "nrstr" ignores all the SAS statements including ";,&" and "%".
There are a large number of macro functions and it's worth looking around if you think there's one you might need. Also, of interest are the following commands (look them up) that can help with debugging:
1. mprint
· writes all non-macro code generated by the macro
1. mlogic
· when a macro begins executing
· values of macro parameters
· when program statements execute
· the status of any %if or %do condition
· when a macro stops executing
1. Symbolgen
· writes information concerning the resolution of macro variables to the log

Chapter 5 Further procs

In this chapter we will examine three particular procedures in SAS.
1. proc sql: a procedure allowing for the use of sql syntax in SAS;
1. proc fcmp: a procedure allowing for the creation of custom functions;
1. proc optmodel: a package that allows for optimisation in SAS.
Proc sql
Basic SQL
SQL is a language designed for querying and modifying databases. Used by a variety of database management software suites:
1. Oracle
1. Microsoft ACCESS
1. SPSS
SQL uses one or more objects called TABLES where: rows contain records (observations) and columns contain variables. Importantly,
1. Starts with proc sql; (as expected)
1. Ends with quit; (some interactive procedures do)
The following code creates a data set called test in the work library as a copy of the mat013.mmm data set:
proc sql;create table test asselect *from mat013.mmm;quit;
The "*" command tells SAS to take all variables from mat013.mmm. We can however specify exactly what variables we want:
proc sql;create table test asselect Name, Age, Sexfrom mat013.mmm;quit;
We can also create new variables:
proc sql;create table test asselect Name, Age, Sex, weight_in_kg/(height_in_metres**2) as bmifrom mat013.mmm;quit;
Further SQL
In this section we'll take a look at what else SAS can do. For the purpose of the following examples let's write a new data set:
data mat013.example;input Var1 $ Var2 Var3 $ Var 4 Var5 $;cards;A 1 A 2 BA 1 A 2 BB 1 A 1 CC 2 B 2 DC 2 C 1 E;run;
Some simple SQL code very easily helps us to get rid of duplicate rows (this can be very helpful when handling real data). To do this we use the "distinct" keyword.
proc sql;create table example asselect distinct *from mat013.example;quit;
We can also select particular variables:
proc sql;create table example asselect distinct var1, var2, var3from mat013.example;quit;
We can also use the "where" statement to select variables that obey a particular condition:
proc sql;create table example asselect *from mat013.examplewhere var2<=var4;quit;
We can sort data sets using the "order by" keyword:
proc sql;create table example asselect distinct *from mat013.exampleorder by var1;quit;
A very nice application of SQL is in the aggregation of summary statistics. The following code creates a new variable that gives the average value of var2. The value of this variable is the same for all the observations:
proc sql;create table example asselect * mean(var2) as average_of_var2from mat013.example;quit;
We could however get something a bit more useful by aggregating the data using a "group" statement:
proc sql;create table example asselect var1, mean(var2) as average_of_var2from mat013.examplegroup by var1;quit;
Joining tables with SQL
A very common use of SQL within SAS is to carry out "joins" which are equivalent to a merger of data sets. There are 4 types of joins to consider:
1. inner join
63. output table only contains rows common to all tables
63. variable attributes taken from left most table
1. outer join left
64. output table contains all rows contributed by the left table
64. variable attributes taken from left most table
1. outer join right
65. output table contains all rows contributed by the right table
65. variable attributes taken from right most table
1. outer join full
66. output table contains all rows contributed by all tables
66. variable attributes taken from left most table
To work with these examples let's use the data sets created with the following code:
data mat013.dogs;input Owner $ Name $;cards;Jeff RuffusJanet SamPaul .Joanna .;run;data mat013.cats;input Owner $ Name $;cards;Jeff KittyPaul .Joanna TinkerbellVince Chick;run;
The following code carries out an inner join of these two datasets also changing the name of the "Name" variable depending on which data set it was from, the output of which is shown.
proc sql;create table merged_table asselect a.Owner,a.Name as Dog_Name, b.Name as cat_Namefrom mat013.dogs as a, mat013.cats as bwhere a.Owner=b.Owner;quit;
[image: images/image23.png] The following code carries out a left outer join, the output of which is shown.
proc sql;create table merged_table asselect a.Owner,a.Name as Dog_Name, b.Name as cat_Namefrom mat013.dogs as aleft join mat013.cats as bon a.Owner=b.Owner;quit;
[image: images/image46.png] The following code carries out a right outer join, the output of which is shown.
proc sql;create table merged_table asselect a.Owner,a.Name as Dog_Name, b.Name as cat_Namefrom mat013.dogs as aright join mat013.cats as bon a.Owner=b.Owner;quit;
[image: images/image07.png] The following code carries out a full outer join, the output of which is shown.
proc sql;create table merged_table asselect a.Owner,a.Name as Dog_Name, b.Name as cat_Namefrom mat013.dogs as afull join mat013.cats as bon a.Owner=b.Owner;quit;
[image: images/image33.png]
Proc fcmp
In previous chapters we have seen various in built functions in SAS. For various reasons it might be required to create a custom function. We will do this with the "fcmp" procedure. This procedure allows us to create custom functions using data step syntax (which allows for "if" and "do" statements to be used). The following code creates a function called "ln" that gives the natural log of a number:
proc fcmp outlib=sasuser.funcs.ln;function ln(x);y=log(x);return(y);endsub;quit;
This code in fact creates a function named "ln" in a package named "funcs". The package is stored in the data set sasuser.funcs. To use this function we need to tell SAS which data set contains the function. We do this with the following piece of code:
option cmplib=sasuser.funcs;
It is then straightforward to call this function:
option cmplib=sasuser.funcs;data test;x=5;y=log(x);new_Y=ln(x);run;
The main advantage to using this procedure is that we can include complex data step syntax. The following function takes two inputs and gives a geometric sum:
proc fcmp outlib=sasuser.funcs.Gsum;function Gsum(i,n);s=0;do k=0 to n;s=s+i**k;end;return(s);endsub;quit;
Let's test this on the following data set:
data test;input n i;cards;1 12 13 24 25 26 2;run;data G_sum_test;set test;y=Gsum(i,n);run;
Optimisation
Another powerful aspect of SAS is it's optimisation engine. We can optimise various types of problems using the "optmodel" procedure. The following code optimises the polynomial: .
proc optmodel;var x,y;min z=x**2-x-2*y-x*y+y**2;solve;print x y;quit;
The output is shown, note that SAS automatically chooses a solver (in this case Non Linear Programming and Interior Point methods).
[image: images/image27_opt.png] We can also include a domain:
proc optmodel;var x<=0,y>=2;min z=x**2-x-2*y-x*y+y**2;solve;print x y;quit;
[image: images/image22_opt.png] We can solve further more complex optimisation problems, including constraints using the 'constraints' keyword:
proc optmodel;var x1>=0, x2>=0, x3>=0;max f=x1+x2+x3;constraint c1: 3*x1+2*x2-x3<=1;constraint c2: -2*x1-3*x2+2*x3<=1;solve;print x1 x2 x3;quit;
The output is shown (note the solver used was a variant of simplex).
[image: images/image11_opt.png]
It is also possible to read in the constraints of a particular optimisation problem from a data set. This can prove to be very handy when dealing with huge problems so it's worth spending time researching that approach.
image1.png
" Resuits window
Explorer window Command window

Output window

 — T

Editor window

Log window

image10.png
‘The procedure used: "import™

The keyword "proc" The location of the external file we want to import.

oole Run Solug

The name of the

SAS datafile we are .3 ourenacos gss The file type we are importing.
creating. 00003 dbmemcevs Note that this is not necessary

igprariace as SAS will recognise the

The . 006 sang extension of the external file.
e "replace" option 700"

that tells SAS to” (000
overwrite existing IS
datasets with the
same name. The *“getnames=yes" option
which tells SAS to read the
first row of the data file for the
variable names.

The keyword "run"

image11.png
[~] SAS: Explorer

File Edit View Tools Solutions Help

First_data_set

image12.png
T Tablo has Faon sponed n brouss mods

au
Sanny
Jeoxia
Sulien
Joraniah
Sulie

erar am
e 4L
s 2oL
i re
w2 9ne
w3 ane
s A
Kerna oo
A aor

s00
387
10030
6502y
10
102930
w98
w0320
s

78719719566
48.50394061
565.9515243
206.14460157
s64. 2040201
802.12601665
i ouasseaes

50s.927267
527.5009786

image13.png
‘The procedure used: “export™

The keyword “proc* The name of the SAS datafile we are exporting

Toole Run go

The location we
want to export to.
The file type we
‘are exporting to,

tells SAS to overwrite any
existing files with the same
name.

The keyword "run®

image14.png
DT Tablo has Faon sponed 7 brouss mads

Habal
Honuel
e
Holody
Holody
Hontqomary

erat
ov6 4ot
s 20t
i are
w20 A
w24 ahe
s A
eras ohs
w2 o

10600
i
e
w12
10286
o024
ses1z
2000

210.71801221
140000106
siaaiia220
sa3.00907082
52, 0095551
397961720
w1670
34143010356

image15.png
File pdit view Tools Solutions Halp
The 58 syton 09122 Honday, Februery 20, 2012 5 [
Hoghe_in_ Home_ Sevinge_in Random_
obe ana g sox Matras vaight_in Ky Posteade Poinds Nobar
1 Waloom 5 Hato 8 crae a0 30 67312263301
3 Hanval s a1 sws 4 400 81408401869
4 ar i meta 4 aws 3o 6981 31.40134220
5 waro o 02 bua 1e 512 520 00007042
6 Maria 24 Pomale 30 crid TR 20 403.07992660
7 Mard 26 ¥ 5 wrae 3nc 10256 502, 68025551
® Wolody Ly 53 Wr24 JAG 5070354 33796370
5 Walody sir o7 7 500 32186 116.66437105
10 Hontgamery 10 97 s 1an 86512 40316678494
11 yer 30 90 cras sas 15640 54455991374
12 Hauroan sy 7 cr2 e 2000 941,43038356
13 mike 27 male Reprars 250 54010802911

image16.png
File pdit view Tools Solutions alp

fotes Thurb position av 142
The 58 syton

09122 Honday, Februsry 20, 2012

Engine/iost Depondent Information

ovnar Nema enavk.
Fila Site (bytes) 1630

Alphabatic List of Variab

+ o veriable Type men
2 Mo won o
4 aighe_in Hour in o
6 oma Pastioda cher o
1 ama har 10
® Rondom_tunber wom i
5 veighe_inxg num ®

and Actributas

brsmia.
s
s,
s10.
sesiiz.
e
s,
smsmia.

Intormat

pronz.
Beaniz.
s,
f10.
Bratz.
sess2.
s,
sesaa.

image17.png
File pdit view Tools Solutions Halp

obe ana

Hatcon
Hontgonery
Hike

Hyor

Hark
Hanual

10 Holody

11 Hauroan

12 Habol

13 Malody

The 58 syton

Hoghe_in_
Hatros valght_in Ky

Hale
Forala
Malo
Hale

1.6
e

186
e

09122 Honday,

rastoae

cr2 aac
wis 1ae
crie Tam
w2t ano
prepe
T
w5 0L,
w6 on
w7 s
v by
cr27 an
w2e a0

savings_in_
Paands

30
56812

20

10286

250
15648
64951

B aoo
2186
2000
10000
sor03s4

Fobruary 20, 2012

Nobar

1312260000
d6. 16678454
t03.a7992660
50260095551
54, 010802911
84458991374
314m134220
014.80401069
11666437105
4149010356
210, 11841221
333637380

i

=l

image18.png
File Edit View Toole Solutions Help

: +

ERROR: You cannot open MATODB.MIM.DATA for output access with member-level control because
MATO08.MMN.DATA ie in use by you in resource environment SORT.
NOTE: The SAS System stopped prosessing thic_step because of errors.
NOTE: PROCEDURE SORT used (Total process tima)
real time 0.00 saconds.
cpu time 0.00 saconds

=

image19.png

image2.png
| ibraries

k ile BEdit View Tools Solutions Help

L

() vibraries
File Shortcuts
(5} Favorite Folders

image20.png
Fila Edit View Toole Solutione

Holp

W
Hoan
std Deviation
Skewn
Uncorractad 8
Coeff Variation

Location
Moan 405
Modian 101
Hoda

The 8A8 systen 13416 Tuesday, February 21, 2012

The UNIVARIATE Procedure
variable: Savings_in_Pounde

Homente
13 sum veighte
405776.201 gun Observations
140410392 variance
3.60401831 Kurtosie
2.57986813 corractad
346029121 §td Brror ean

basic Statietical Massurs
Variability
7762 sed paviation
0000 variance
. Ranga

Intarquertile Range

1

5275051
197151812
123520257
2.36581813
369428.361

1404104

1onsiE2

5078334
1786

1

image21.png
File Edit View Tools Solutione

Holp

Location
Moan 4057762
Median 10000.0

Hode

Bagic Stetistical Massuras

Variability

4 Deviation 1404104
variance LsnsiRI2
Rango. 5070334
Interquertile Range 31786

=]

image22.png
File Bdit View Toole Solutione Help

ve

scudantre ©
sign
Signed Renk

The sAS Syeten

13116 Tussday,

The UNIVARIATE Procadure

ariablar

Savings_in_Pounds

Teste for Location: Mu0=0

© 1oa1s7s
M 6.5
H sis

b value-

er> || 0.3180
x> [m| 0l0002
r>= |s| 0.0002

Quantilee (Definition 5)

quantile
100% Hax
558

950

500

758 03

508 Hadian
258 o1

108

st

I

ot minlk

5078354
5078354
5078354
64553
32156
10000
00

30

20

20

20

February 21,

202

20

image23.png
File Bdit View Toole Solutione Help

Quantiles (Definition 5)

ouantile
1008 Hex
558
951
s00
758 03
508 Hadian
258 o1
108
st
1
0% min
&

5078354
5078354
5078354
4353
32156
10000
00

30

20

20

20

image24.png
File Bdit View Toole Solutione Help

The sAS Syeten 13116 Tussday, February 21, 2012 21 B

The UNIVARIATE Procadure
variable: Savings_in_Pounds

Extrons Observations

-Lowest- ----mighest-
valua obe valua obe
20 6 15648 10

30 1 32156 4
250 13 56512 5
100 7 64953 12
2000 3 so78354 H

image25.png
- ©®©® Math_tests.csv (~) - VIM

O~ hsh WNE

[y
[JYe)

11

o=y
a8

Mame, Teacher,Pass/Fail
Bob,Mr Smith,B
Brayden,Mr Evans,E
Billy,Mr Smith,P
John,Mr Smith,
Jack,Mr sSmith,
Julie,Mr Evans
Jane,Mr Evans,-
Jackie,Mr Evans,
Bonnie,Mr Evans,
Bob,Mr Evans,P
Juliet,Mr Smith,P

1,1

All

image26.png
File pdit view Toole

Solutions Help

The 8AS Syeten 11137 Tussday,
The FREQ Procedure

Table of Teacher by Pass_Fail

Teacher Pase_Fail

Froquency|
Percent |
Row por |

Ir

| I |
| 16.8 | 36.36 | s4.55
| i |
| I |

33033 | 66,67
66.67 | 50,00
9w00	6.6
20000	soloo
33133	soloo

27.27 72735 100.00

Fabruary

21,

2012

image27.png
File Bdit view Tools

Solutione Help

Age

Height_in Metr

Woight_in_Kg

savings_in_Pounds

Randon_ubor

The 8a8 systen

1

The CORR Procedure

Poaraon Correlation Coafficients, N
Prob > |r| under NOI Rho=0

Hoight_
Age in_Motres
1.00000 0.01093
03717
0.01093 1.00000
0977
0.40189 0.78927
01734 0.0026
0.62482 0.00640
0.0224 0.3835
-0.25686 0.20438
0.3969 0.5030

b

woight_
inKkg

0.40109
01734

0.75927
0.0026

1.00000
0.42968
0.1428

0.10353
07360

2052 Tuasday,

-1
Savings
in_Pounds

0.62482
0.0224

0.00640
0.9835

0.42968
0.1428

1.00000

0.15484
0.6135

February 21, 2012

Randon_
Nunbor

~0.25606
0,396

0.20438
0.5030

0.10383
0.7364

0.15080
6.6135

1.00000

s

image28.png
File Bdit View Tools Solutions Halp

The 8a8 systen

The CORR Procedure

2 veriablos: Age

simple Statistics

variable il Hoan sta Doy
Ago 13 22.07692 1918928
I 87635 172097

Savinge_in_Pounds

N Poarson Correlation Coutficients,
Prob > x| under ROt Rh

Age

Age 1.00000
savinge_in_Pounds o.62482
0.0224

12:52 Tuesday, Fabruary 21,

Savings_in_Pounds

sun Hininun

267.00000 2.00000
1140091 1150000

W=

savinge
in_rounds

o.62482
0.0224

1.00000

2012 6

Maxinun

7400000
470320

image29.png
PROC GLM running

File Bdit View Toole Solutione Help

HoTE: At top.

The SAS System 09144 Wednesday, February 22, 2012 1
The REG Procadure
Model: MODELL
Dapendent Variable: Height in Matres
Number of Observations Read 13

Nunber of Obgervatione Used 13

Analyeie of Variance

sum of Hoan
Sourca oF Squaras squara F Valua Pr > F
Model 2 0.17509 0.08754 11,78 0.0024
Error 10 0.07434 0.00743
Corrected Total 12 0.24943
Root MSE 0.08622 R-square 0.7020
Dependent Nean 1.69769 Adj R-Sq 0.6423
B Cooff Var 5.07873

image3.png
Help

File Edit View Tools

o

Maps

Solutions

Mapsgfk
Mapssas
Sashelp

Sasuser

Work

image30.png
Output-Untitled-p

File Bdit View Toole Solutione Help

The SAS System 09144 Wednesday, February 22, 2012 2
The REG Procadure
Model: MODELL
Dapendent Variable: Height in Matres i
Parameter Betimates
Parameter standard
variable oF Eetimate Brror t value Pr > |t
Intarcapt 1 1.18436 0.10909 10.06 <.0001
vaight_in_Kg 1 0.00829 0.00171 .05 0.0007
Savings_in_Pounde 1 -3.20621B-7 1.6016628-7 2,08 0.0673

image31.png
0
,90

wn

(=]
nmewnmanrmununmo on
@ o -

MO OM~M~MWMN~SO®

-

~

El
£
f)
El
El
£)
£
f)
3
2
£
f)

l\,65
i
A
€
i
A

" A A A oA A A A A A oA A oA A a
e e E AN NN NN
NMTWNOM~MODMNO @M DO

™o o e o e

™™ math.csv (~) - VIM
1 [@ALC,PROF, GRADE

All

image32.png
PROC GLM running

File Bdit View Toole Solutione Help

The €S System 09144 Wednesday, February 22, 2012 8
The ANOVA Procedure
bapandent Variabla: GRADE
Sum of
source e Squares Mean Square F Value Pr > F
Hodal. 2 1070.400000 535.200000 S50 0.0200
Brror 12 1166.000000 97.166667
Corracted Total 1 2236.400000
R-Square Coeff Var Root MSE GRADE Mean
0.478626 12.13955 5.857315 81.20000 i
source oF Anova 88 Mean Square F Value Pr > F
roF 2 1070.400000 535.200000 s.51 0.0201
I
7

image33.png
File

dit View Toole

Image Colore Solutions

Holp

Percent

w0

Distribution of Height_in_Metres

1575

1725 1975
Heignt_in_Metres

205

image34.png
K.LISTING.

File Edit View Tools Solutions Help

Goroll forward to ses the subsequent graph.

feight.inMetres
10
2
198
1
X
192
X}
1.8
188
1
i}
[}
5]
50
I3
nn
1
158
e
s
162
b}
158
16
[

B
+
¥
+ + -
+
+
T T T T T T T
" 50 [n 5 0 m

Weight.in.tg

image35.png
@ [© el frome/smavik/Deskop/ira. tabie i, BEEEEEEEE
Texthis 8 esmos Grph... Clicloud 5 oropbox GMendeey Onlne TexE.. 8 WolfamAloha L) importtomen... 8 Game Theary « S other sookmaks

e 525 Sy

image36.png
scatter_plot.pdf

“The Gplot Proce.

Plotof Helght.

image37.png
ression.tf - LibreOffice Writer

ew Insert Format Table Tools W
Rraitdues vE
i 8 [Defautt | [Times
] S T i ot o ERRRE)
Fit Diagnostics for Weight_in_Kg
E 2 2
W] e e of 1o o
E ° 8 o E |
-] ° 3o ° 3 ofee
H o 2 o 3 ofs
& o g Z o, B g o0
o, o a ° 4 °
10 ° ©
M EREE] % 0 70 8 % 01 03 03 04
Predicted Value Predicted Value Leverage
0 7w g
" 04
10 o "
4 - ° a0
£ P & é
o] et 2wl o9 o
20 %o 00+
MR 50 6070 80 % 10 0 5 My
Quante rodiced Value Observaton
w Tit Mo Resiual
s
. o oo 1]
E Pavmeen 2]
i e
0 NEE 100
Requre 05765 g
B K |Ad ReSuare 0538
5o 5 » 0004 0n annaan
Find v A

Page1/4 | Default | English(uk) |INSRT |STD || | Tables:at |OBB |@——e @ [101%

image38.png

image39.png
Sution

o
n
"
100
o

¢

Kot
P
Ko 1o
cnr
eras s
w24 a0
w2 e

500
w020
102930
10186
sesiz

w56, s094061
78719719566
20, 92726
0213801668
02, enossst
o2 16eran0

image4.png
© SAS: New Library

Library

Name: (| Engine: Default 4Enable at startup

Library Information

Path: 1 Browse

Options:

OK cancel Help

image40.png
e

image41.png

image42.png
[<) SAS: VIEWTABLE: Work.Dwarfs

File Edit View Tools Data

Solutions Help

Dopey

Sneezey

Happy
Sleepy

Grumpy
Bashful

Doc

image43.png
SAS: VIEWTABLE: Work.Dwarfs

File Edit View Tools Data Solutions Help

NOTE: You cannot shrink the window beyond this p

Dopey

Doc

image44.png
data work.C;
set work.A work.B;
run;

work.A
Name | Age
Billy .| 28
ABob - fog-]
work.B
Name | Age
Jack 21
Jon 31

Name $8 | Age 8

Jack 21

—_—

work.C
Name | Age
Billy 28
Bob 24

image45.png
data work.E;

merge work.A work.D;
by Name;

run;

work A

Name | Age

Billy .. .| 28. work E

| Bob o} 24+ Name $8 | Age 8 | Height 8 Name | Age | Height

Bob 24 195 Billy 28 | 173

work.D _— Bob 24 179

Name | Height Bob 24 195

Billy {173

Bob....1179.....|

Bob--1195 -

image46.png
Symbol Definition Example
- Exponential y=x**3

* Multiplication r=x*y

/ Division d=;

+ Addition S=XHY

- Subtraction t=x-y

image47.png
Function Definition Example
Abs Absolute value abs(x)
Int Integer (takes the integer int(x)
part of the argument)
Log Natural log log(x)
Log10 Log base 10 log10(x)
Round Rounds the argument to round(x,.01)
the nearest specified level
Sqrt Square root sqri(x)

image48.png
Function Definition Example

Substr Outputs a substring of substr(string, N,L)
length L at starting position
N of a string

Upcase Converts a string to upper | upcase(string)
case

Lowcase Converts a string to lower | lowcase(string)
case

Trim Removes only trailing trim(string)
blanks from a string

Index Return 0 or a starting index(string,substring)

position of substring in
given string

image49.png
b @ ® @ birthday_money.csv (~) - VIM

1 Birthday,Amount
2 1,100

32,150

43,120

5 4,0

5 5,500

76,5

1,1 All

image5.png
The keyword "data". ‘The library .

The keyword “input”
which tells SAS that the
variable names are
going to follow.

The keyword “cards’
that tells SAS that the
raw data is about to
follow.

The second variable
name "Age".

The raw data

The first variable name
The keyword “run" “Name" followed by a *" to
tell SAS that this is a string.

image50.png
(] SAS: VIEWTABLE: Work.Bm_analysis

File Edit View Tools Data Solutions Help

image51.png
k.Bm_analy

File Edit View Toole Data Solutione Help

NOTE: You cannot ehrink the window bayond thic point.

image52.png
' ©©® birthdays.csv (~) - VIM

+ Mame,Birthday

2 Malcolm,09/10/1934
% Mathieu,04/02/1998
2 Jack,02/11/2005

5 Nicolas,03/03/1978
6

7

8

,05/02/1922
Pascal,08/04/1954

.,eg/ea/zeez
9 ,08/01/2004

10 Penny,10/12/1984
11 ﬂ,11/09/1983
12 Paul,11/12/1984
13 Janet,12/12/1994
14 Joanna,12/09/1983
15 Iain,01/07/1985
16 -,11/67/1992
17 Bryan,10/09/1986
19 Richie,12/07/1984
19 Dan,02/05/1989

20 _,62/09/1988
21 Juliet,01/12/1982
22 Vince,14/02/1984
23 Zoe,23/09/1983

<99C written 1,1 ALl

image53.png
SAS: Output-Untitled

File Edit View Tools Solutions Help

me
e (bytes)

The SAS System 07:51 Wednesday,

The CONTENTS Procedure
Engine/Host Dependent Information
smavak

16384

Alphabetic List of Variables and Attributes

Variable Type Len Format Informat
Birthday Num 8 DDMMYY10. DDMMYY10.
Name Char 7 $7. $7.

]

image54.png
o SAS: VIEWTABLE: Work.Birthdays

File Edit View Tools Data Solutions Help

Malcolm
Mathieu

Jack

Nicolas
Pauline

Pascal

Dimitri

Julien

Penny
Izabela
Paul

Janet

Joanna

Tain

Usain

Bryan

Richie

Dan

Leanne
Juliet

Vince

Zoe

image55.png
o SAS: VIEWTABLE: Work.Birthdays

File Edit View Tools Data Solutions Help

Malcolm 090CT2019
Mathieu 04FEB2019
Jack 02NOV1920
Nicolas 03MAR2019
Pauline 05FEB2019
Pascal 08APR2019
Dimitri 09MAR1920
Julien 08JAN1920
Penny 10DEC2019
Izabela 11SEP2019
Paul 11DEC2019
Janet 12DEC2019
Joanna 125EP2019
Tain 01JUL2019
Usain 11JUL2019
Bryan 10SEP2019
Richie 12JUL2019
Dan 02MAY2019
Leanne 02SEP2019
Juliet 01DEC2019
Vince 14FEB2019
Zoe 23SEP2019

image56.png
ISymbol Mnemonic Definition

< Lt Less than

<= Le Less than or equal to

> Gt Greater than

>= Ge Greater than or equal to
= Eq Equal to

~= Ne Not equal to

image57.png
File Bdit View Tools Data Solutions Help

NOTE: Tabls has been opened in browss moda.

image58.png
Data Step
Compiler

Input Stack

|

Macro Compiler

image59.png
ork. Jjj_after_shoppin

File Edit View Toole Data Solutione Help

NOTE: Table has been opened in browse mods.

Julie 1.5 -199998.5
Juliet 930 -199070
i1l 387 -199643
o0 200 199800
James 10930 189070
Jackie 10 -199990
Jenny 465029 265029
Jeremiah 84953 ~115047
John 1000 199000
o0 500 199500
oo 2930 197070
Jim 470320 270320
Julien | 102930 -97070

image6.png
SAS: Log-Untitled

File Edit View Tools Soluticns Help

NOTE:
NOTE :

real time 0.77 seconds
cpu time 0.16 seconds

data MAT008.first_data_set;
input Name $ Age;

cards;

The data set MATO08.FIRST DATA_SET has 2 observation
DATA statement used (Total process time):

real time 0.10 seconds

cpu time 0.02 seconds

;

run;

image60.png
* %let variablel = Time;
* %let code = variablel,

* %put &&code;
&&code
Macro-Compiler / \

l && H code l
Firstpass through | &/ | Ede |

\l &code /Second pass through

v
l variablel

image61.png
o %let variablel = Time;
e %let code = variablel;

¢ %put &&&code;
&&&code

Macro-Compiler / \

i && H &code ‘
First pass through | &/ | \,;>ab|e1

\

v

Second pass through [Time]

image62.png
(<] SAS: Explorer

File Edit View Tools Solutions Help

image63.png
SAS: VIEW

File Edit View Tools

rk.Merged_table

Data

Solutions

Help

Jeff

Kitty

Paul

Joanna

Tinkerbe

image64.png
SAS: VIEWTABLE: Work.Merged_table

File Edit View Tools Data Solutions Help

Janet
Jeff Ruffus Kitty
Joanna Tinkerbe

Paul

image65.png
SAS: VIEWTABLE: Work.Merged_table

File Edit View Tools Data Solutions Help

Kitty

Jeff
Joanna Tinkerbe

Paul

Chick

image66.png
SAS: VIEW rk.Merged_table

File Edit View Tools Data Solutions Help

Janet

Jeff Kitty

Joanna Tinkerbe

Paul

Chick

image67.png
SAS: Output-Untitled

File Edit View Tools Solutions Help

The SAS System 08:09 Mo
The OPTMODEL Procedure

Solution Summary

Solver NLP/INTERIORPOINT
Objective Function z
Solution Status Optimal
Objective Value -2.333333333
Iterations 2

Optimality Error
Infeasibility

1.3333

6.694645E-14
0

1.6667

image68.png
SAS: Output-Untitled

File Edit View Tools Solutions Help

The SAS System 08 [
The OPTMODEL Procedure

Solution Summary

Solver NLP/INTERIORPOINT
Objective Function z
Solution Status Optimal
Objective Value 2.458416E-8
Iterations 4
Optimality Error 5E-9
Infeasibility
% ¥
-4.0954E-09 2

S

image69.png
SAS: Output-Untitled

File Edit View Tools Solutions Help

The SAS System 08
The OPTMODEL Procedure
Solution Summary
Solver Dual Simplex
Objective Function 4
Solution Status Optimal
Objective Value 8
Iterations 3
Primal Infeasibility 0
Dual Infeasibility 0
Bound Infeasibility 0
x1 x2 x3
0 3 5
= —

()

image7.png
File Edit View Tools Solutions Help

[E] First_data_set

image8.png
File Edit View Tools

SAS: VIEWTABLE: Mat008.First_data_set

Help

NOTE 2

Table has been opened in browse mode.

Bob

Solutions

23

Billy

25

image9.png
@O0 Jiesv()-VIM

Name,Age,Sex,Height in Metres,Weight in Kg,Home Postcode,Savings in Pounds,Random Number

Bohn,15,M,1.72,71,CF24 3AG,1000,336.8041790091
J0,14,M,1.85,73,CF27 4HL,500,757.197195664
J111,21,F,1.57,49,5H6 4JL,357,458. 5639406084
James,24,M,1.59,58,SW5 3]L,10930,565.9515243024
Jenny,74,F,1.63,70,BR21 4YE,465029,206.1446015723
Juliet,15,F,1.62,45,CF14 7BR,930,977.9322277755
Jackie,3,F,1.65,60,NP24 3AG,10,564.2944280989
Julien,37,4,2.01,160,NP24 3AG,102930,583.125016652
Joe,19,M,1.92,75,NP7 5BD,2930,206.9145319983
Jeremiah,39,M,1.54,70,NP15 1AE,84953,41.0423562862
Jin,17,M,1.73,83,CF35 S5AS,470320,985.9272670001
Julie,2,F,1.62,45, CF72 83Y,1.5,327.5803755969
J0,7,F,1.62,51, CF72 9DP,200,50.6616821513

ALl

