
Chapter 1 - Introduction

The Environment
R can be run in a number of different modes, for the purpose of this course we will be focusing on 'interactive mode' through the graphical user interface (GUI); 'batch mode' is also available but will not be covered here. Note that the screenshots and accompanying screencasts for this course were produced with R version 2.14 running on Mac OSX The look and feel on other operating systems will differ slightly.
[image: images/image64.png] The visible windows are:
1. The editor window
1. The console
We can write commands directly into the console window or we can create a script file and edit it in the editor window, highlighting specific text we wish to run. The second approach has the benefit of being able to save the commands written in the script files, although it takes more time (and in fact the commands we write directly in the console can also be saved to a file).
When writing scripts it is good practice to include comments in our files that help describe what the code does. The way to do this in R is with the # symbol before text. The following code is ignored by R:
#2+2
Using the highlight + run approach is akin to copying and pasting the text in the interpreter but R scripts can also be run directly (so that they can be run on servers or as routines without the need to have a user interact).
Objects
R is an extremely versatile programming language. In particular R is an "object oriented language". The significance of this is that everything (functions, data files, outputs of a regression analysis) is an "object". The type of object is called the "class" and what one can do to a class is called a "method". The advantage of this is that when a new "class" is developed one simply needs to ensure that is has relevant "methods", to be compatible with other objects.
As an example, various objects in R have a "plot" method, for example the output of a regression analysis can be plotted using the same command as one would use to plot a scatter plot of a data set.
R has a wide range of data types (which are themselves objects). The 2 classes corresponding to data sets we will concentrate on in this course are:
1. Vectors
1. Data frames
Vectors are simply collections of variables of a particular type ("Numeric", "Character", "Boolean" etc). In R a type of variable is called a "mode", representing how it is stored in the computer memory. Data frames are collections of vectors and correspond to data sets. Technically, data frames are lists with dimensions, which are themselves just generic vectors. One might say a collection of equal length vectors (thus allowing the rectangular shape). Some examples of vectors and data frames are shown.
[image: images/image05.png] Let's import some data!
Importing Data
We will consider two approaches to importing data:
1. Direct input
1. Importing an external data set (xls, csv etc...)
In practice you will never use the direct input method but let's take a look for completeness (although it is very useful when wanting to quickly test a few things). This will also give us our first experience of the editor window!
Let us create a data set named first_data_set which will include the following data:
 Name, Age Bob, 23 Billy, 25
To do so write the following code in the editor window:
Name <- c("Bob","Billy")Age <- c(23,25)first_data_set <- data.frame(Name,Age)
Let's take a look at the shown screenshot of this. You may notice that some elements of the text are highlighted, this is to emphasise key words (note that this doesn't happen automatically on Windows).
1. The first two lines of code make use of the <- operator that assigns an object to a variable.
1. The objects in questions are created using the c(ombine) function that creates a vector. We use this to create 2 vectors: Name and Age.
1. Finally we put the 2 vectors into a data frame using the data.frame command.
[image: images/image22.png] We run this code by highlighting it and pressing ctrl + 'r' (.docx + enter on Mac). Note that when we submit code this way it also appears in the console window. We could have in fact directly type this code into the console window. For those familiar with command line commands the console works in a very similar way. We can press the up arrow repeatedly to cycle through previous commands and use tab to autocomplete.
The data set first_data_set is now saved to memory. To view all the data structures in memory we use the simple line of code:
ls()
A screenshot of the output is shown. We see that there are actually 3 objects in memory, the two vectors (Name and Age) as well as the data frame (first_data_set).
[image: images/image03.png] To view our data set, we simply type the name (as shown):
first_data_set
[image: images/image68.png] Using direct input is of course not at all realistic when trying to import larger data sets.
Often large data sets will be saved in comma-separated values (csv) format which can be read by most (all?) software. We will import the data set shown (here viewed in a simple text editor).
[image: images/image33.png] We will import this data set into R using the following code:
JJJ <- read.csv(file="~/JJJ.csv",head=TRUE)
Let's take a look at the screenshot shown. Note here that we are not using the text editor but directly writing code in the console (this is often how I prefer to use R for short bits of code).
1. read.csv - is the command which is used to tell R to read in data from a csv file.
1. file - an option tells R where the csv file is located.
1. head - an option tells R to read the variable names from the first row of the csv file. Note that this command can be omitted (the default value is TRUE).
We have omitted other options (such as sep which can be used to change the default separator from , to something else).
[image: images/image37.png] Running the code (by either pressing enter if using the console or highlighting and running as before is using the editor) gives the required object as shown.
[image: images/image66.png] In the following chapters we will learn how to create new data sets from old data sets and as such it may become necessary to export files to csv.
Exporting Data Sets
We will export our first data set (first_dataset) to csv using the following line of code:
write.csv(first_data_set,"~/Desktop/first_data_set.csv")
Let's take a look at the screenshot.
1. write.csv is the command which is used to tell R to read in data from a csv file.
1. The first command tells R which R object to export.
1. The second command tells R the location of the csv file.
[image: images/image59.png] ---
Chapter 2 - Basic Statistical Procedures

Procedures
In the previous chapter we were introduced to some very basic aspects of R:
1. what R looks like
1. how to import data into R
1. how to export data into R
In this chapter we will take a closer look at procedures that allow us to analyse and manipulate data. Vectors are the building blocks of all R objects. Single numeric/string variables are in fact vector of size 1. Almost all procedures in R are obtained by applying functions to vectors. Details as to how R handles these operations will be explained in the next chapter (so don't worry about it too much for now).
The procedures we are going to look at in this chapter are:
1. Viewing datasets
1. Summarising the contents of data sets
1. Obtaining summary statistics of data sets
1. Obtaining frequency tables
1. Obtaining linear models
1. Plotting data
A list of procedures
Utility procedures
We have seen how to view and entire data set (by simply printing the name of the object in question).
We illustrate this once again by considering the MMM data set shown, (imported using read.csv).
[image: images/image24.png] At times we might not want to open the data set but simply gain some information as to what is in the data set.
To view only the names of the variables of our data set we use the name function as shown.
names(MMM)
[image: images/image69.png] If we had a very large data set then we could quickly view the first/last few entries using the head/tail function as shown.
head(MMM)tail(MMM)
[image: images/image49.png] Finally if we would like to view a description of the overall structure of a data set we can use the str function as shown.
str(MMM)
[image: images/image34.png] The class of the imported character variables are Factors, this is due to the importation method (read.csv) automatically converting the character variables in this form - details about "Factors" are given below. The reason this occurs is the default value of stringsAsFactors (used in the read.csv function) is TRUE, the following code forces the characters retain their class without conversion.
MMM<-read.csv("MMM.csv",stringsAsFactors=FALSE)
The factor stores the nominal values as a vector of integers in the range [1... k] (where k is the number of unique values in the nominal variable), and an internal vector of character strings (the original values) mapped to these integers. This is often a much more efficient way of handling strings.
[image: images/image31.png]
Descriptive statistics
To gain an initial set of summary statistics of a data frame we can use the summary function:
summary(MMM)
The output of which is shown.
[image: images/image50.png] Recall that most "things" in R are objects and "summary" is a good example of a generic function that works on most objects. If you are faced with a new object (for example the output of a regression analysis) it is sometimes worth trying to apply summary on it to get some initial information.
To obtain a particular summary statistic of a specific variable, we can use functions that apply to vectors and select the vectors from the dataset.
To select a particular column (as a vector) from our dataset, we use the following command:
MMM$Age
We can then apply various functions to this vector:
length(MMM$Age)mean(MMM$Age)sd(MMM$Age)min(MMM$Age)max(MMM$Age)sum(MMM$Age)var(MMM$Age)
The output of which is shown.
[image: images/image52.png] We can compartmentalise our results using the by function. The general syntax for the by function is given below:
by(data=dataFrame , Indices=grouping variables, FUN= a function)
We'll use this to obtain the mean age and height compartmentalised by sex:
by(MMMAge, MMMSex, mean)by(MMM$Height.in.Metres, MMM$Sex, mean)
The output of which is shown.
[image: images/image13.png]
Compartmentalising Summary statistics in R
The above code subsets the data frame by the grouping variable. If we want to just carry out an action on a vector (as above, we're only actually interested in the Age vector or the Height vector) then we can also use the "tapply function". This applies a function to a vector according to the levels of another vector:
tapply(MMMAge, MMMSex, mean)
Finally, to reduce the number of keystrokes, we can use the with statement. This tells R to evaluate everything within a given data frame. The following code reproduces the above results:
with(data=MMM,by(Age,Sex,mean))with(data=MMM,tapply(Age, Sex, mean))
Note: the data= statement can be omitted.
Frequency Tables
The table function allows us to obtain frequency tables of data sets. As an example let us consider the data set shown. The table function creates a "table" (a particular type of R object):
table(math_tests$Teacher,math_tests$Pass.Fail)
[image: images/image19.png] Again we can write this as:
with(math_tests,table(Teacher,Pass.Fail))
We can save this table as a new object and use the prop command to gain row and column totals and proportions:
mytable<-table(math_tests$Teacher,math_tests$Pass.Fail)margin.table(mytable, 1)margin.table(mytable, 2)prop.table(mytable,1)prop.table(mytable,2)
The output of all this is shown.
[image: images/image32.png]
Correlations
The following lines of code select only the columns from MMM that are numeric. An explanation of this will follow in the next chapter.
MMM[,sapply(MMM,is.numeric)]
The correlation 'cor' function only acts upon numeric vectors (and/or dataframes), hence the selection of solely numeric values first.
MMMnum<-MMM[,sapply(MMM,is.numeric)]cor(MMMnum)
The cor function however does not give tests of significance. We can obtain significance tests between two variables using cor.test:
cor.test(MMMAge,MMMHeight.in.Metres)
The output is shown.
[image: images/image29.png] As is often the case in open source software, packages are independently developed and need to be called to be used in R. Above we have shown the very basic approach to obtaining correlations in R, we will now use the rcorr function from the Hmisc package.
To install the package we use the following code:
install.packages("Hmisc")
Once that happens a window opens asking us to choose the mirror from which to download. This is shown.
[image: images/image54.png] Once that is done to load the package the following code is required:
library(Hmisc)
or:
require(Hmisc)
To see the packages currently loaded we can use the following code:
search()
Note: Packages can also be installed by selecting the 'Packages' tab and selecting the package required for installation.
[image: images/image63.png] Using this package, we will use the rcorr function that gives the correlation matrix for a data set. Note that the data set must be numeric and in matrix form. The following code selects the numeric variables from the MMM data set and converts the result to a matrix:
MMMnum<-MMM[,sapply(MMM,is.numeric)]MMMmat<-as.matrix(MMMnum)
Once this is done we can get the correlation matrix using the following code:
rcorr(MMMmat)
The output is shown.
[image: images/image20.png]
Linear Models
In this section we very briefly see the syntax for some basic linear models in R.
The general syntax for linear regression is as follows in R:
lm(outcome~predictors)
The following code will be used to investigate whether or not there is a linear model of height with weight and savings and predictors (in two ways, the second is slightly more compact and leaves less room for confusion):
lm(JJJ$Height.in.Metres~JJJ$Weight.in.Kg+JJJ$Savings.in.Pounds)lm(Height.in.Metres~Weight.in.Kg+Savings.in.Pounds,data=JJJ)
The results are shown.
[image: images/image38.png] To get the full set of results from the regression analysis we use the following code:
summary(lm(Height.in.Metres~Weight.in.Kg+Savings.in.Pounds,data=JJJ))
The output is shown.
[image: images/image45.png] Looking at the p value we see that the overall model should not be rejected, however the detailed results show that perhaps we could remove savings from the model.
Analysis of variance (ANOVA) can be done easily in R. We shall show this using a new data set (math.csv) shown.
[image: images/image58.png] aov(outcome~class,data)
We will use the "aov" function to see if the grades obtained by students depend on their teacher (in two ways, the second is slightly more compact):
aov(math$GRADE~math$PROF)aov(GRADE~PROF,data=math)
The results are shown.
[image: images/image42.png] To get the full set of results from the ANOVA we use the following code:
summary(aov(GRADE~PROF,data=math))
The results are shown.
[image: images/image60.png]
Plots and charts
Note that due to the object oriented nature of R, almost all of the above outputs have a "plot" attribute.
The simplest way to produce a histogram in R is to use the "hist" function. The following code gives a histogram for the height of entries in the JJJ data set as shown.
hist(JJJ$Height.in.Metres)
[image: images/image15.png] The simplest way to produce a scatter plot in R is to use the "plot" function. The following code gives a scatter plot for the height against weight of entries in the JJJ data set as shown.
plot(JJJ$Weight.in.Kg,JJJ$Height.in.Metres)
[image: images/image47.png] There are various other ways to obtain similar graphs, as well as change the look and feel of our graphs. We won't go into this here but you are encouraged to look into it (in particular the ggplot package is widely used).
Exporting output
All the non graphical outputs from R are objects, as such they can be output to a file (to be copied into another document if need be) using the write statements of Sections 1.4. However to export graphical output, we use any of the following statements (depending on the output format required):
pdf("mygraph.pdf")win.metafile("mygraph.wmf")png("mygraph.png")jpeg("mygraph.jpg")bmp("mygraph.bmp")postscript("mygraph.ps")
Once that command is written we use a normal R command to create a plot and finally we close the output file with the following statement:
dev.off()
The following code creates a png file entitled "height_v_weight_plot" with the previous scatter plot.
png("height_v_weight_plot.png")plot(JJJ$Weight.in.Kg,JJJ$Height.in.Metres)dev.off()

Chapter 3 - Manipulating data

Vectors and data frames
Vectors
When considering R data frames it is important to recall that they are composed of vectors. Even individual scalars and strings are vectors. This is a very powerful tool.
One important notion when handling vectors is the use of 'recycling'. As all elements are vectors, when performing an operation between two vectors of different length, R automatically repeats (or recycles) the shorter one until it is long enough.
[image: images/image61.png] In the previous example, (u+v) we add the elements of both vectors together. R automatically increases the length of u so that the operation becomes (1,2,3,4,5) + (0,1,0,1,0). In the second example we compare the elements of v to 4. R automatically increases the length of the vector containing 4 so that the operation becomes (1,2,3,4,5)<(4,4,4,4,4) which returns a vector of size 5 with boolean (True or False) elements.
This second concept is important when understanding how to select certain variables in R (we saw this briefly in the previous section).
Another important notion in R is that of indexing. We can select elements of a vector by specifying the indices of the elements required:
dwarfs<-c("Dopey","Sneezey","Happy","Sleepy","Grumpy","Bashful","Doc")dwarfs[c(1,4,5)]dwarfs[3:length(dwarfs)]
[image: images/image23.png] Both of the previous approaches use a vector of indices to indicate the elements we require. The second approach uses a shorthand to create a vector of elements (containing the integers 3 to 5). Another approach is to simply use a vector of boolean values (True or False) to indicate the positions that are to be selected.
Index<-c(TRUE,FALSE,FALSE,FALSE,FALSE,FALSE,TRUE)dwarfs[Index]
[image: images/image00.png] It should be straightforward to realise that we can combine recycling and indexing to filter vectors:
Index<-substr(dwarfs,1,1)=="D"dwarfs[Index]
The first command creates an index set of boolean variables using the substr function and recycling (in this case used to take the first character of each element). This allows us to obtain the elements of the vector dwarfs with first letter D as shown.
[image: images/image04.png] We have seen how to subset vectors using filtering, the same logic applies to data frames.
We can first of all use indexing to obtain the variables we want. For example the following code will select the all the variables apart from the 4th and 5th:
MMM[c(1,2,3,6,7,8)]
A quicker way is to simply state the variables we want to drop:
MMM[c(-4,-5)]
The output of the above code is shown.
[image: images/image39.png] We can also list the names of variables we want to keep:
MMM[c("Name","Age","Sex","Home.Postcode","Savings.in.Pounds","Random.Number")]
Finally we can create a vector of booleans that gives the same above result or the opposite result (i.e. drops the variables).
Index<-names(MMM) %in% c("Weight.in.Kg","Height.in.Metres")MMM[Index]Index<-names(MMM) %in% c("Weight.in.Kg","Height.in.Metres")MMM[!Index]
Recall the names function simply gives a vector containing the names of all the variables in the MMM dataset. The %in% operator is used to create a vector of booleans by testing if the elements of names(MMM) are in the vector c("Weight.in.Kg","Height.in.Metres"). The ! operator acting on Index simply negates the booleans contained in Index.
[image: images/image17.png]
Selecting Observations
We can select any particular element of a data frame in R using the following syntax:
dataframe[i,j]
This would give the entry for variable j of observation i as shown.
[image: images/image57.png] If we ignore one of the indices R simply returns all the entries corresponding to that index. For example the following code would return all the observations for the 7th observation of the JJJ data set:
JJJ[7,]
We can also use this to sort a data set. The "order function" returns a set of indices reflecting the ascending order of a vector, thus to sort the JJJ data set by age we use the following code:
JJJ[order(JJJ$Age),]
We can use filtering to expand on this and select all observations that obey a particular condition. For example the following code selects entries of JJJ that have age less than or equal to 18:
JJJ[JJJ$Age<=18,]
Merging and concatenating data sets
To concatenate two data sets in R we use the rbind function (i.e. we bind the two dataframes by rows).
MMMJJJ<-rbind(JJJ,MMM)
Note that both these data sets need to contain all the variables. If one of the datasets does not contain all the variables then you need to add that variable to it and set its values to NA (missing).
[image: images/image26.png] To merge two dataframes in R we use the merge function. We'll illustrate this with the following data set:
Name<-c("Bob","Ben")Weight<-c(75,94)other_data_set<-data.frame(Name,Weight)
We'll merge this new data set with the data set we created in Chapter 1.
merged_data_set<-merge(first_data_set,other_data_set,"Name")
(or equivalently:)
merged_data_set<-merge(x=first_data_set,y=other_data_set,by="Name")
The output is shown.
[image: images/image35.png] Note that the merge statement only selects observations that are present in both files. We can pass further arguments to the merge statement that allow us to select all the values from a particular data set and/or both data sets. These operations are at times called 'joins' (and are very common in SQL which we shall see in Chapter 5). The basic merge statement (as above) would be referred to as an 'inner' join.
A left outer join (selecting all variables from the first data set):
merged_data_set<-merge(first_data_set,other_data_set,"Name",all.x=TRUE)
A right outer join:
merged_data_set<-merge(first_data_set,other_data_set,"Name",all.y=TRUE)
A full outer join:
merged_data_set<-merge(first_data_set,other_data_set,"Name",all=TRUE)
The output of the above is shown.
[image: images/image51.png]
Creating new variables
Creating new variables using various arithmetic and/or string relationships is straightforward in R. The following code creates a new data set call MMM_with_BMI as a copy of the MMM data set and then adds a new variable "BMI" as a function of the height and weight variables in the MMM_with_BMI dataset.
MMM_With_BMI<-MMMMMM_With_BMI$BMI<-MMM$Weight.in.Kg/(MMM$Height.in.Metres^2)MMM_With_BMI
The output is shown.
[image: images/image55.png] The above code is quite long though, so we can use the within function which is similar to the with function. It lets R know you are working within a particular data frame.
MMM_With_BMI <- within(MMM, BMI <- Weight.in.Kg/(Height.in.Metres^2))
The output is shown:
[image: images/image18.png] Some of the arithmetic functions available in R are shown.
[image: images/R_math_operators.png] [image: images/R_math_functions.png] We can also do operations on strings, the following code replaces the variable Sex with the first character of Sex (which gets rid of the Male - M and Female - F issue).
MMM_With_BMI$Sex<-substr(MMM_With_BMI$Sex,1,1)
Some examples of string functions are shown.
[image: images/R_string_functions.png]
It's also worth checking the web for other R functions (there is a huge amount of them).
Renaming variables
To rename variables one can use the rename function from the reshape library (that can be installed as we have seen in previous section).
library(reshape)JJJ<-rename(JJJ,c(Sex="Gender"))
The output is shown.
[image: images/image06.png] Another option is to use the "fix" function that opens the dataset in a GUI that easily allows for modification of the dataset (including the name of the variables). Note that changes are saved on close of the fix environment.
fix(JJJ)
[image: images/image25.png]
Operations across rows
As discussed previously, the columns of a data frame can be manipulated very easily as they are just vectors. In the next section we will see how to manipulate vectors using flow control statements but we will take a quick look at two functions that allow for quick and easy manipulation across rows.
We will demonstrate this using the birthday_money.csv data set as shown.
[image: images/image65.png] Suppose we want to take a cumulative sum of the birthday money, we create a new variable call total using the cumsum function that returns the cumulative sum of elements of a vector.
birthday_money$total<-cumsum(birthday_money$Amount)
[image: images/image36.png] Another similar tool is to use the "diff" function that calculates consecutive differences of elements of a vector:
birthday_money$yearly_diff<-c(NA,diff(birthday_money$Amount))
Note that we also include a first entry of our column "yearly_diff" as "NA", this is because the output of diff will be shorter than the length of the original vector.
[image: images/image56.png]
Handling dates in R
Dates are a particular class in R. When importing dates, they are imported as strings.
[image: images/image14.png] We import the file and create a data frame in the usual way:
birthdays<-read.csv("~/birthdays.csv")
Using the "str" command to view the structure of our data frame:
str(birthdays)
The output is shown confirming that the dates are recognized as strings (recall that by default read.csv imports strings as factors).
[image: images/image48.png] In this current format if we tried to carry out any mathematical manipulation of the dates we would not succeed. We can however tell R that certain variables are dates. We do this using the "as.dates" function by describing the format our dates are in:
birthdays$Birthday<-as.Date(birthdays$Birthday,"%d/%m/%Y")
The format is indicated using "%x" where "x" can be of various formats as show.
[image: images/R_date_formats.png] We'll now check the structure of our data frame, re-order (using the order function - that returns the indices of the elements of a vector in order) our birthdays and calculate the difference between birthdays (using the diff function).
str(birthdays$Birthday)order(birthdays$Birthday)sorted<- birthdays[order(birthdays$Birthday),]diff(birthdays$Birthday[order(birthdays$Birthday)])
The output of all this is shown.
[image: images/image02.png]

Chapter 4 Programming

Flow Control
A huge part of programming (in any language) is the use of so called "conditional statements" that allow for flow control. We do this in R using "if" statements.
There are two types of "if" statements in R. The simple "if" statement as shown below:
x<-39if (x>20) y<-1
We can use this in conjunction with an "else" statement:
x<-19if (x>20) y<-1 else y<-0
Finally, the if-else call is a function and as such we can rewrite the above code as:
y<- if (x>20) 1 else 0
Finally we can include multiple commands as outcomes of an if statement by using "{}":
x<-20if (x==21) {y<-1z<-"T"} else{y<-0z<-"F"}
The above statements checks a single value and whilst we'll learn in the next section how to loop offer sets of values it is very much worth learning how to use the 'vectorized' form of the if statement: the "ifelse" command. The general syntax is given below:
ifelse(Boolean_Vector,Outcome_If_True,Outcome_If_False)
An example of this is given below:
ifelse(c("True","False","True","False"),"Young","Old")
The output is shown.
[image: images/image01.png]
Using this and our knowledge of filtering we see how we can create new variables using the ifelse statement. The following code creates a new variable "age_group":
MMMJJJ$Age_group<-ifelse(MMM$Age<30,"Young","Old")MMMJJJ[c("Name","Age_group")]
The output is shown.
[image: images/image67.png]
Some of the comparison operators that can be used in conjunction with 'if' statements are shown.
[image: images/R_comparison_operators.png]
A further important notion in programming is the notion of loops. There are two types of loops that we will consider:
1. for
1. while
The for loop allows us to compute iterative procedures. As with most things in R, the for loop iterates a value over a vector. The following code outputs the total number of birthday candles that would have been used on everyones birthday cake in the JJJ data set.
Candles=c()for (Age in JJJ$Age){c<-0for (n in 0:Age){c<-c+n}Candles<-c(Candles,c)}Candles<-data.frame(Name=JJJ$Name,Age=JJJ$Age,Candles)
The first statement creates an empty vector called "Candles". The first for loop, loops over the age variable in the JJJ data set ("0:age" is in fact a short way of writing a vector of integers from 0 to age). For each of those values of age we use a second for loop to sum the total number of candles and concatenate that value to the vector Candles. Finally we create a new data set Candles by concatenating the various vectors required (note that we're also renaming certain variables here).
[image: images/image10.png] Note that in general this is not the most efficient way of undertaking things in R. Vectorized versions of the above are much faster (we won't cover these here). Another improvement for the above code is to create the vector Candles initially as a vector of the correct size and type. For example we can create a numeric vector of a certain length using the following code (all initial values will be set to 0):
Candles=vector("numeric",length=length(JJJ$Age))
Using this the above code would be written as:
Candles=vector("numeric",length=length(JJJ$Age))k<-0for (Age in JJJ$Age){k<-k+1c<-0for (n in 0:Age){c<-c+n}Candles[k]<-c}Candles<-data.frame(Name=JJJ$Name,Age=JJJ$Age,Candles)
The second type of loop we will consider is the do while loop. This loop checks a condition before carrying out an operation. The following code creates a vector with all even numbers less than 70:
k<-0even<-2*keven_numbers<-c(even)while(even<70){k<-k+1even<-2*k;even_numbers<-c(even_numbers,even)}
The output is shown.
[image: images/image21.png]
Functions
One of the great capacities of R is the ease with which one can create new functions. The general syntax for this is given by:
myfunction <- function(arg1, arg2, ...){statementsreturn(object)}
The return statement is very important as it indicates the "result" of the function. This can be any R object, a vector, a data frame etc... Note that is can also be omitted, as long as the last command is what you want returned.
The following code creates a function called "f1" that adds 3 to a number if it is even and adds 2 to a number if it is odd.
f1 <- function(x){r <- if (x%%2==0) x+3 else x+2return(r)}
To run the function we would then use it like any other R function. For example the following would return 11.
f1(9)
(The %% command return the modulo of the first number with respect to the second)
We can also create a function with no arguments that simply replicates shorthand for some code:
My_plot <- function(){r<-hist(JJJ$Height.in.Metres)return(r)}My_plot()
The following code defines a function that creates a new dataset entitled "JJJ_after_shopping" that subtracts a quantity from the savings variable in the JJJ dataset:
shopping <- function(spend){New.Savings<-JJJ$Savings.in.Pounds-spendJJJ_after_shopping<-data.frame(JJJ$Name,Old.Savings=JJJ$Savings.in.Pounds,New.Savings)return(JJJ_after_shopping)}
Note that this function makes use of recycling (when creating the New.Savings vector).
[image: images/image12.png] We can of course define functions with multiple arguments as below:
shopping <- function(spend,trips){New.Savings<-JJJ$Savings.in.Pounds-trips*spendJJJ_after_shopping<-data.frame(JJJ$Name,Old.Savings=JJJ$Savings.in.Pounds,New.Savings)return(JJJ_after_shopping)}
It's also possible to set certain values as defaults:
shopping <- function(spend,trips=1){New.Savings<-JJJ$Savings.in.Pounds-trips*spendJJJ_after_shopping<-data.frame(JJJ$Name,Old.Savings=JJJ$Savings.in.Pounds,New.Savings)return(JJJ_after_shopping)}
Vectorising
In general the for loops we have seen can be written in a much more efficient way using function and various forms of the apply function (which apply functions over vectors, lists and matrices):
1. apply
1. lapply
1. sapply
1. mapply
Note that an array in R is a very generic data type; it is a general structure of up to eight dimensions. For specific dimensions there are special names for the structures. A zero dimensional array is a scalar or a point; a one dimensional array is a vector; and a two dimensional array is a matrix. The general syntax of the apply function is given below:
apply(matrix,margin,function)
We have not yet seen matrices but they are relatively simple to understand: 2 dimensional objects. The following code produces a 2 by 3 matrix:
mat<-matrix(c(1,2,3,4,5,6),2,3)mat
The "margin" option (either 1,2 or both (1:2)) simply tells R what dimension to apply the required function to, experiment with the following:
apply(mat,1,mean)apply(mat,2,mean)apply(mat,1:2,mean)
We can use the apply function on data frames and vectors but in general it will be easier to use the "lapply" function which simply applies a function to a 1 dimensional object. The lapply function becomes especially useful when dealing with data frames. In R the data frame is considered a list and the variables in the data frame are the elements of the list. We can therefore apply a function to all the variables in a data frame by using the lapply function. Note that unlike in the apply function there is no margin argument since we are just applying the function to each component of the list. The following code simply returns the sqaure roots of a vector.
lapply(c(1,2,3,4,5),sqrt)
Note that the above returns a list (an R object that we will not pay much attention to here). We can get a vector by using the following:
unlist(lapply(c(1,2,3,4,5),sqrt))
The "sapply" function is simply a version of lapply that by default returns the most appropriate object type. The following code gives the exact same result as above:
sapply(c(1,2,3,4,5),sqrt)
Finally, there exists a multivariate example of the above function which allows us to pass multiple arguments to a function. The following code defines a simple function:
simple_function<-function(x,y) x/y
We can now apply this function so that it takes the consecutive ratios of two vectors:
mapply(simple_function,1:4,4:1)
With these functions we can drastically improve the performance of R code. The following reproduces code from before:
my_sum<-function(x){sum(x)}sapply(JJJ$Age,my_sum(1:x))
Note that there is no need to actually define the function we can refer directly to the function object:
sapply(JJJ$Age,function(x) sum(1:x))
Handling strings
SAS is a macro language and philosophically macros allow a user to substitute pieces of text for a variable, and evaluate the result. R is not a macro language and thus does the opposite: evaluates the arguments and then uses the values.
The paste command allows us to concatenate strings. The following code outputs the string "Hello-World". Note that we can use any string as a separator (include the empty string "").
x<-"Hello"paste(x,"World",sep="-")
This immediately allows for quite complex manipulation of data files. For example the following code, imports the 5 datafiles File_1.csv - File_5.csv:
f<-function(i){read.csv(paste("File_",i,".csv",sep=""))}dat<-lapply(1:5,f)
Note that this piece of code introduces a new structure a bit more formally. The object "dat" is here a list and we use the "lappy" function (we haven't seen this yet) to apply the newly created function "f" (that imports data).
The output is shown.
[image: images/image41.png] We can also revisit a previous function (the shopping function) and create a different data set for every value of spend. We'll even make this a bit more complicated and nest functions so that we can repeat this operation for various values of the variable "spend".
shopping <- function(spend,trips=1){New.Savings<-JJJ$Savings.in.Pounds-trips*spendinfile<-paste("JJJ_after_shopping_",trips,sep="")data_frame<-data.frame(JJJ$Name,Old.Savings=JJJ$Savings.in.Pounds,New.Savings)assign(infile,data_frame,envir=.GlobalEnv)}multiple_shopping<- function(spend,max_trips=10){for (i in 1:max_trips){shopping(spend,i)}}
Note the extra option that has been passed to the "assign" command "envir=.GlobalEnv". This is to ensure that the data sets created in the function are global (i.e. are still there when the function stops running).
[image: images/image40.png]
Memory and scripts.
In this section we will take a brief look at how R handles the "workspace". If you have already quit R you would have seen the prompt "Save workspace image?". If you answer "yes" then R saves various things to various files (in the current working directory): 1. .Rdata holds all the objects (data frames, vectors, functions etc...) currently in memory (note that this file is written in an R specific file and so can't be read). 2. .Rhistory holds all the commands used (and so can be recalled).
Being prompted whether or not to save the workspace is helpful (in my opinion) as you can simply open an R session to try a few things and not save (similar to using the work library in SAS). It is possible to save the workspace image as you go (this is worthwhile in case your system happens to crash):
save.image()
Note: we can leave the argument of the "image" function empty (as above), in which case the file will be saved in the current directory. We can also pass the required location to the "image" function.
It is also possible to save particular objects to particular files as well as load files but we won't go into that here.
One final aspect to consider is that of running script files from the command line. We do this using the "source" command. Note that this command executes all the code in the script as if it was typed in one after the other. To see this let us write the following code in a text file (saving it as "first_script.r" on the desktop for example):
x<-c(1,2,3,4)y<-c(1,0)print(x+y)print(x*y)
We then run the script using the following code:
source("~/Desktop/first_script.r")
Repetitive command that are run often (for example, routine data analysis) can be saved as scripts and called if and when new data is received.

Chapter 5 Further packages

In this chapter we will examine three packages in particular:
1. sqldf: a package allowing for the use of sql syntax in R
1. ggplot2: a powerful package for the plotting of data
1. twitteR: a package that allows for the data mining of twitter
sqldf
Basic SQL
SQL is a language designed for querying and modifying databases. Used by a variety of database management software suites:
1. Oracle
1. Microsoft ACCESS
1. SPSS
SQL uses one or more objects called TABLES where: rows contain records (observations) and columns contain variables.
To use SQL in R we need to use the sqldf package.
The following code creates a data set called test in the work library as a copy of the mmm data set:
test<-sqldf("select * from MMM")
The "*" command tells R to take all variables from the data set. We can however specify exactly what variables we want:
test<-sqldf("select Name,Age,Sex from MMM")
We can also create new variables:
test<-sqldf("select Name,Age,Sex,Weight_in_Kg/(power(Height_in_Metres,2)) as bmi from MMM")
Some of the SQL operators are shown.
[image: images/SQL_operators_in_R.png]
Further sql
In this section we'll take a look at what else R can do with sql. For the purpose of the following examples let's write a new data set:
Var1<-c("A","A","B","C","C")Var2<-c(1,1,1,2,2)Var3<-c("A","A","A","B","C")Var4<-c(2,2,1,2,1)Var5<-c("B","B","C","D","E")example<-data.frame(Var1,Var2,Var3,Var4,Var5)
Some simple SQL code very easily helps us to get rid of duplicate rows (this can be very helpful when handling real data). To do this we use the "distinct" keyword.
sqldf("select distinct * from example")
We can also select particular variables:
sqldf("select distinct Var1,Var2,Var3 from example")
We can also use the "where" statement to select variables that obey a particular condition:
sqldf("select * from example where Var2<=Var4")
We can sort data sets using the "order by" keyword:
sqldf("select distinct * from example order by Var1")
A very nice application of SQL is in the aggregation of summary statistics. The following code creates a new variable that gives the average value of var2. The value of this variable is the same for all the observations:
sqldf("select avg(Var2) as average_of_Var2 from example")
We could however get something a bit more useful by aggregating the data using a "group" statement:
sqldf("select Var1,avg(Var2) as average_of_Var2 from example group by Var1")
Joining tables with SQL
A very common use of SQL is to carry out "joins" which are equivalent to a merger of data sets. There are 4 types of joins to consider:
1. inner join
36. output table only contains rows common to all tables
36. variable attributes taken from left most table
1. outer join left
37. output table contains all rows contributed by the left table
37. variable attributes taken from left most table
1. outer join right
38. output table contains all rows contributed by the right table
38. variable attributes taken from right most table
1. outer join full
39. output table contains all rows contributed by all tables
39. variable attributes taken from left most table
To work with these examples let's use the data sets created with the following code:
Owner<-c("Jeff","Janet","Paul","Joanna")Name<-c("Ruffus","Sam",NA,NA)Dogs<-data.frame(Owner,Name)Owner<-c("Jeff","Paul","Joanna","Vince")Name<-c("Kitty",NA,"Tinkerbell","Chick")Cats<-data.frame(Owner,Name)
The following code carries out an inner join of these two datasets also changing the name of the "Name" variable depending on which data set it was from.
sqldf("select a.Owner, a.Name as Dog_Name, b.Name as Cat_Name from Dogs as a, Cats as b where a.Owner=b.Owner")
[image: images/image30.png] The following code carries out a left outer join, the output of which is show.
sqldf("select a.Owner, a.Name as Dog_Name, b.Name as Cat_Name from Dogs as a left join Cats as b on a.Owner=b.Owner")
[image: images/image16.png] Right and full outer joins are not yet supported in sqldf however they can actually be obtained by simply using the "merge" function (as discussed in Chapter 3).
ggplot2
This is an extremely powerful package that allows for the creation of publication quality plots with ease. There are two basic functions in ggplot2:
1. qplot which allows us obtain quick graphs
1. ggplot which gives us more control of granularity (we will not go into it here)
Basic plots with qplot
The qplot command is very similar to the plot command in that in will often produce the plot required based on the inputs. To obtain a histogram of the Height.in.Metres variable of the JJJ data set we simply use:
qplot(data=JJJ,x=Height.in.Metres)
This produces the plot shown.
[image: images/image08.png] We can improve this by changing the bin width, including a title and changing the labels for the x axis and y axis.
qplot(data=JJJ,x=Height.in.Metres,binwidth=.075,main="Height of people in the JJJ data set",xlab="Height",ylab="Frequency")
[image: images/image28.png] We can obtain a density plot corresponding to the above by using the "density" option for the "geom" argument as shown:
qplot(data=JJJ,x=Height.in.Metres,binwidth=.075,main="Height of people in the JJJ data set",xlab="Height",ylab="Frequency",geom="density")
[image: images/image43.png] If we pass two vectors to qplot we obtain a scatter plot:
qplot(data=JJJ,x=Weight.in.Kg,y=Height.in.Metres)
we can also pass qplot a "size" argument to obtain the graph shown:
qplot(data=JJJ,x=Height.in.Metres,y=Weight.in.Kg,size = Age)
[image: images/image11.png] We can of course obtain scatter plots against categorical variables as shown:
qplot(data=JJJ,x=Sex,y=Height.in.Metres)
[image: images/image07.png] We can pass "boxplot" as the "geom" argument to get a boxplot as shown.
qplot(data=JJJ,x=Sex,y=Height.in.Metres,geom='boxplot')
[image: images/image27.png]
Advanced features
We can add various features to our scatter plot. The following code just plots a line between all the points:
qplot(data=JJJ,x=Height.in.Metres,y=Weight.in.Kg,geom="line")
We can combine various geom options so as to not just include a line but also the points:
qplot(data=JJJ,x=Height.in.Metres,y=Weight.in.Kg,geom=c("point","line"))
Finally we can also add a smoothed line to our plot as shown:
qplot(data=JJJ,x=Height.in.Metres,y=Weight.in.Kg,geom=c("point","line","smooth"))
[image: images/image09.png] We can very easily obtain a collection of any of the above plots across a categorical variables using the "facets" command as shown:
qplot(data=JJJ,x=Height.in.Metres,binwidth=.075,facets=~Sex)
[image: images/image70.png] We can use the "ggsave" command to save the last plotted graph to file:
ggsave(filename="~/Desktop/test.pdf")
One final aspect we will take a look at in ggplot2 is that of layers. To do so we will use the following dataset:
MMMJJJ_to_plot<-within(MMMJJJ,{data_set<-ifelse(substr(MMMJJJ$Name,1,1)=="M","MMM","JJJ");Sex<-substr(Sex,1,1)})
Firstly we create a plot using qplot and assign it to p (recall that everything in R is an object).
p<-qplot(data=MMMJJJ_to_plot,x=Height.in.Metres,y=Weight.in.Kg,facets=~data_set~Sex,color=Sex)
To view the plot we simply type "p" (note that we have also included a "color" option):
p
Finally we can add a new layer to this plot by "adding" (+) a linear model to our graph:
p<-p+stat_smooth(method="lm")
The output of all this is shown.
Finally we can save a particular graph object in ggplot using ggsave:
ggsave(p,filename="~/Desktop/plot.pdf")
[image: images/image62.png]
twitteR
The last package we will consider is a package that can be used to data mine twitter.
To get the certain trends we use can use the following code:
getTrends(period = "daily", date=Sys.Date())getTrends(period = "daily", date=Sys.Date() - 1)getTrends(period = "weekly")
To obtain tweets for a particular hashtag:
searchTwitter("#orms")
Finally to obtain tweets from a particular user (the following gives the tweets of the INFORMS as shown):
userTimeline("INFORMS")
[image: images/image53.png] [image: images/image44.png]
image1.png
Editor window

image10.png
Q- Help Search

[Platfora: (386-opple-darnind E- 871386 (3ZBTE)

R is free softmare and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'licenseQ)' or ‘licence()" for distribution details.

Natural language support but rusning in an English locale

R is o collaborative project with many contributors.
Type 'contributors()" for more inforation and
"citation()" on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line hel;
'help.start()' for an HTML browser interface to help,
Type 1a0+ to auit K.

o

[R.app GUI 1.42 (5933) i386-apple-darwing.8.0)

[Workspace restored from /Users/VincesAir/,RDate]
[Mistory restored from /Users/Vincesair/.Rapp.history]

mang®

67312263
210.71541

337.96374
11666437
483.16678
54455991
941.49038

54.01880

> 150
0 "Age” “First.data_set” "J0)" “Nose"
> Ml<-read. csv(MM, csv")
> 150
£ "Age’ “First_data_set" "0)" -
> -

Bame Age Sex Height.in.Netres Meight. in. Ko Hoe.Postcods Savings.in.Pounds Randos.Musber
1 Malcos 9 Male 1.8 88 20 3G
2 Mabel 76 F 156 58 cr27 amL
3 Mawel 45 M 167 4 W6 4L
4 Mark 44 Male 17 o W5 3L
5 More 11 M 172 82 R 4vE
6 Marie 24 Female 145 8 Cre 7R
7 Mori 26 F 161 6 NP2e 3G
8 Mclody 104 F 167 53 NP26 3AC
9 Melody 51 F 154 8 WP7 B0
10 ontgomery 19 M 180 97 WPis AE
1 Myer 37 M 17 % CF3ssAS
12 Mareen 52 F 142 B ey
3 Mike 27 Male 192 9 72 9P

image11.png
Blotfor: 30 e areind £ 0306 10483
2 (s fr saftmsre s come with MSOUTELY 90 AT
T Tense o HicenceO fae Sieimahion deatls,

Netural anpusge sapport bt umnic 1 on Esglish locale

Ty Scotrtbuisesd
Ao e ' e & o' pacheges i peblictions.

Ty tdem fo ome demo, “MIBO" far cmie ha. o0
e el Tor o e bromir oterfoc 0 1.
T 4 1o e

B 5,42 G 30l e 1.0)

restord from Rers binceics Moots)
Wiy Sechaead frn ousssncoshi Aapp mbtars]

-+ ronesom
5 e o st

image12.png
=) Help Search)

[R-opp GUI 1.42 (5933) i386-apple-darnind. 8.0

[Workspace restored from /Users/Vinceskir/.RData]
[History restored from /Users/Vinceshir/.Rapp.history]

> headqan)

o R e e
1Malcom 9 Male 1.81 €24 346 30 673.12263
2 Mabel 76 1.56 H cF27 anL 10000 210.71541
3Manuel 45 M 1.67 @ Sh6 4JL 400 814.88402
4 Mark 44 Male 1.7%6 6 S5 3)L 64953 3148134
5 Marc 11 M 172 82 BR21 4YE 4512 52380907
6 Marie 24 Female 1.45 E CF14 78R 20 48387993
> tailquen

Name Age Sex Melght. {n Matres Baight.n.Eg Home.Postcode Savings. in,Seunds RandomMusber

§ 0 delody i 1.67 No24 3AG 5078354 337.9637
9 Melody F 1.5 o NP7 58D 32156 1166644
10 bontoamery 3 M 1.80 97 NPIS 1AE 6512
1 Myer 37 M 1.79 9% (35 5AS 15648
12 Moureen 52 F 1.0 7 72 By 2000
13 Mike 27 Male 1.92 9 72 90 250

image13.png
‘dataframe’ the dass (D¢ SUPer 4 The number of

of the MMM cbject observations variables

Factor w/ 12 level

‘The name of thevariables The classes of the variables.

The number of evels for

variables that have dass

“Factor .. the rumber of
distinet variables,

The first few levels

‘The mapping from the first
few variables tothairlevels

image14.png
806 R Console

= Q- Help Search

Natural language support but running in an English locale

R is a collaborative project with many contributors.
Type ‘contributors()' for more information and
“citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
"help.start()' for an HIML browser interface to help.
Type 'aQ)" to quit R.

[R.app GUI 1.42 (5933) i386-apple-darwind.8.0]

[Workspace restored from /Users/VincesAir/.RData]
[History restored from /Users/VincesAir/.Rapp.history]

> MMM<-read. csv("MMM. csv”, stringsAsFactors=FALSE)

13 obs. of & variable:
i chr "Malcom” "Mabel” "Manuel "Mark" ...
int 9 76 45 44 11 24 26 104 51 19 .

: chr "Male" "F" "M' "Male"
num 1.81 1,56 1.67 1.76 1.72 1.45 1.61 1.67 1.54 1.8 .
int 88 58 41 64 82 38 69 53 87 97 .
$ Home_Postcode chr "CF24 3AG" "CF27 4HL" "SW6 4JL" "S5 3)L" ...

$ Savings.in.Pounds: int 30 10000 400 64953 4512 20 10256 5678354 32156 56512 ...
$ Random.Number @ num 673.1 210.7 814.9 31.5 523.8 ...

$ Height.in.Metres
§ feight.in.Kg

image15.png
B (s froe softnare ond comes with ABSOLUTELY WO RARRANTY
You are melcome to redistribute (¢ under certoin conditions.
Type licenseQ)" or ‘licenceQ)' for distribution detefls.

Notural langusge support But running in an English locole

B 45 o collaborative project with many contributors.
Type "contributors()" for more inforsation ond
“citation®)* on how to cite R or & packages in publications.

Type 'dema)! for some demos, 'help()" for on-line help, or
“help.startQ)" for on NTM. bromser interfoce to el
Type 'Q0" o quit R.

[R.09p GUI 1.42 (S933) (386-cpple-darmind.5.8)

[Morkspoce restored from /Users/Vincesiir/.RDota)
[fistory restored from /Users/Vinceshir/.Ragp.history)

image16.png
> MWMSAge
[1] 9 76 45 44 11 24 26104 51 19 37 52 27
> length(MMMSAge)
113
> mean(MMM$Age)
[1] 40.38462
> Sd(MMMSAge)

[1] 26.72246
> min(MWMSAge)
s

> max(MWMSAge)
[1] 104

> sum(MVMSAge)
[1] 525

> var(MWMSAge)
[1] 714.0897
>

image17.png
Q- Help Search)

bY(”“SMe » MMM$Sex, mean)

[1] 26.66667
> by(MMM$Height.in.Metres, MWMSSex, mean)
MSSex: F

image18.png
- ©®©® Math_tests.csv (~) - VIM

O~ hsh WNE

[y
[JYe)

11

o=y
a8

Mame, Teacher,Pass/Fail
Bob,Mr Smith,B
Brayden,Mr Evans,E
Billy,Mr Smith,P
John,Mr Smith,
Jack,Mr sSmith,
Julie,Mr Evans
Jane,Mr Evans,-
Jackie,Mr Evans,
Bonnie,Mr Evans,
Bob,Mr Evans,P
Juliet,Mr Smith,P

1,1

All

image19.png
(Q- Help Search

> table(math_tests$Teacher,math_tests$Pass.Fail)

Fp
Mr Evans 2 4
Mr Smith 14
> mytable<-table(math_tests$Teacher,math_tests$Pass.Fail)
> mytable

FP

Mr Evans 2 4

Mr Smith 1 4
> margin.table(mytable, 1)

Mr Evans Mr Smith
6 s
> margin. table(mytable, 2)

FP
38
> pr

rop.table(mytable,1)

F
Mr Evans 0.3333333
Mr Smith 0.2000000 2.8000000
> prop.table(mytable,2)

Mr Smith 9.3333333 0.5000000
>|

image2.png
Vectors

DWN =0 s W

302
1.14
50.1

Numeric

Character

Logical Data Frames

Name Age Smoker?
Bob 24 True
Jon 39 False

Town Population
Cardiff 341,054
Swansea 141,300
Newport 232,500

image20.png
> Minum<- MM, sapply (WM, 5. numeri)]
> cor(MiMnum)

> cor.LesLWMSAGe,MMSHeight in.Metres)
Pearson's product-noment correlation

MSAGe and MMSHeight in Netres
1.1598, df - 11,

image21.png
® R Console
b ® ™ O

@R xaEQ = >
= Q- Help Search ¥

R is free softwore ond comes with ABSOLUTELY NO WARRANTY.

You are welcome to redistribute it under certain conditions

Type 'license()' or 'licence()' for distribution details.
Natural language support but running in an English locale

R is a collaborative project with many contributors.

Type *contributors()' for more information and

“citation()' on how to cite R or R packages in publications

Type "demo()’ for some desos, 'help()' for on-line help, or

"help.start()' for an HTML browser interface to help.

Type 'a()" to quit R

[R.opp GUI 1.42 (5933) 1386-apple-darnind.8.0]

[Workspace restored from /Users/VincesAir/.RData)
[History restared from /Users/Vinceskir/.Rapp.history]

Please select a CRAN mirror for use in this session ——-

image22.png
(Q- Help Search

Loading required package: survival
Loading required packege: splines
Hmisc library by Frank € Harrell Jr

Type libraryChelp="Haisc'), ?0verview, or ZHwisc.Overvien')
to see overall documentation.

NOTE:Haisc no longer redefines [.factor to drop unused levels when
subsetting. To get the old behavior of Hmisc type dropUnusedLevels().

Attaching package: ‘Haisc’

The following object(s) are masked from ‘package:survival’:
untangle. specials

The following object(s) are masked from ‘package:base’:
format.pval, round.POSIXt, trunc.POSIKE, units

Warning messa
package ‘Haisc’ was built under R version 2.14.2

image23.png
(Q- Help Search

> Winum <M, sapp Ly (WM, 5. numeri)]

> MMnat<-as.matrix(Minum)

> rcorr(M#nat)
Age Height. in.Metres Weight.in.

Age 33 EX

Height.in Metres o

Weight.in.Kg 1

Savings.in.Pounds

Random. Nunber

kg
42
63
00
7
6

e 13

»

Age
Height. in Metres
Weight.in.Kg
Savings. in.Pounds.
Random. Nurber

Savings. in.Pounds Randon.

image24.png
Q- Help Search
> Im()))$Height . in.Metres~)I$Height .in.Kgel)I$Savings. in.Pounds)

Call:
m(formula = J)J$Height.in.Metres ~ J))$Weight.in.Kg + J))$Savings.in.Pounds)

Coefficients:
(Intercept) 1))$Weight.in.Kg 11)$Savings.in.Pounds
1.184e400 8.292¢-03 286e-07

>
> Im(Height.in.Metres-Weight.in.Kg+Savings.in.Pounds,data-J1))

Call:
1m(formula = Height.in.Metres ~ Weight.in.Kg + Savings.in.Pounds,
data = 1)

Coefficients:
(Intercept) Weight.in.Kg Savings.in.Pounds
1.184e400 8.292¢-03 -3.286e-07

image25.png
R Console
L4 b

= (@ telp Search)

> summary(lm(Height. in.Metres-Height. in.Kg+Savings.in.Pounds,data=11))

Call:

Im(formula = Height.in.Metres ~ Weight.in.Kg + Savings.in.Pounds,
data = 123)

Residuals:
Min 30 Max

Coefficients:

Estinate Std. Error ¢ value Pr(>It1)
(Intercept) 1.184e400 1.091¢-01 10.856 7.45¢-07 ***
Meight.in.Kg 8.292¢-03 1.709c-03 4.853 0.000668 ***
Savings.in.Pounds -3.286e-87 1.602¢-87 -2.052 0.867311 .

Signif. codes: ©

e%1 0,001 %’ 0.01 ‘%' 0.05 <0 9.1 ¢ ' 1

Residual standard error: 9.08622 on 10 degrees of freedom
Multiple R-squared: 0.702, Adjusted R-squared: 0.6423
F-statistic: 11.78 on 2 and 10 DF, p-value: 0.002352

>

image26.png
v

O™ math.csv (~) - VIM

1 [@ALC,PROF, GRADE

(=]
@ m N n
-

NMTNONOONO = NMST IO
o o v e e

All

image27.png
(Q-~ Help Search

> aov(math$GRADE~math$PROF)
Call:
aov(formula = math$GRADE ~ math$PROF)

Terms:

math$PROF Residuals
Sum of Squares 1070.4 1166.9
Deg. of Freedom 2 12

Residual standard error: 9.857315

Estimated effects may be unbalanced
> aov(GRADE~PROF , data-math)
Call:
aov(formula = GRADE ~ PROF, data = math)

Terms:

PROF Residuals
Sum of Squares 1070.4 1166.0
Deg. of Freedom 2 12

Residual standard error: 9.857315
Estimated effects may be unbalanced

>

image28.png
(Q~ Help Search

> summary(aov(GRADE~PROF, data-math))

Df Sum Sq Mean Sq F value Pr(>F)
PROF 2 1070 535.2 5.508 0.0201 *
Residuals 12 1166 97.2

Signif. codes: @ ‘***' 9.001 ‘**' 9.01 ‘*’ 0.05 ‘.’ 0.1 ¢ ' 1
>

image29.png
Qura 2t

Histogram of JJJ$Height.in.Metres

r

5
5
g

£

g
H
£

T
19 20

JJJ$Height.in Metres

image3.png
The "<-* operator used to assign
Values to data SrUCtUTes The *ct keyword used to concatenate
data (this creates a vector)
The name of the first vector @ © Untitied 2
we are creating; "Name®

<functions> £)@ Help search

Name <- c("Bob", "Billy")
Age <-c(23.25)
" first_data_set < data frame(name,age)

The name of the second vector
we are creating: *Age"

The name of the data_frame
we are creating: *first_data_set"

The *data.frame* keyword which creates,
a data frame from a set of vectors.

image30.png
Qunz 217

) 1386 e dericd £.8)

H
8
=
z
2
s
-4
E

JJISWeight.in.Kg

image31.png
Type 'q()" to quit R.

[R.app GUI 1.42 (5933) i386-apple-darwind.8.0]

[Workspace restored from /Users/VincesAir/.RData]
[History restored from /Users/VincesAir/.Rapp.history]

> ve-c(1,2,3,4,5)

> ue-c(0,1)

> usv

1113355

Warning message:

Inu+ v : longer object length is not a multiple of shorter object
length

> ved

[1] TRUE TRUE TRUE FALSE FALSE

>

image32.png
Help Search

> dwarfs<-c("Dopey", "Sneezey", "Happy" , "Sleepy", "Grumpy" , "Bashful", "Doc")
> dwarfs[c(1,4,5)]

[1] "Dopey" "Sleepy" "Grumpy"

> dwarfs[3:1ength(dwarfs)]

[1] "Happy" "Sleepy" "Grumpy" "Bashful" "Doc"
>

image33.png
- (Q- Help search)

> Index<-c(TRUE,FALSE, FALSE, FALSE, FALSE ,FALSE, TRUE)
> dwarfs[Index]
[1] "Dopey" "Doc"

>

image34.png
(@ relp Search

“Sleepy” “Grumpy"

> substr(dwarfs,1,1)m="D"

[1] TRUE FALSE FALSE FALSE FALSE FALSE TRUE
> Indexc-substr(dwarfs, 1, 1)e="0"

> dwarfs[Index]

[1] "Dopey” *Doc”

“"Bashful" "Doc”

image35.png
Q- Help Search

> MMM[c(1,2,3,6,7,8)]

Name
Malcom

Mabel

Manuel

Mark

Marc

Marie

Mari

Melody

Melody

10 Montgomery
11 Myer
12 Maureen
13 Mike

Age
9
76
45
a4
11
24
26
104
51
19
37
52
27

> MWM[c(-4,-5)]

Name
Malcom

Mabel

Manuel

Mark

Marc

Marie

Mari

Melody

Melody

10 Montgomery
11 Myer

Maureen

Age
9
%
45
44
11
24
2
104
51
19
37
52
27

Sex Home.Postcode Savings.in.Pounds Random.Number

Male

CF24 3AG
CF27 4HL
W6 4JL
SHS 3)L
BR21 4YE
CF14 78R
NP24 3AG
NP24 3AG
NP7 SBD
NP15 1AE
CF35 5AS
CF72 83
CF72 90P

.Postcode

CF24 3AG
CF27 4HL
W6 4JL
SHS 3L
BR21 4YE
CF14 78R
NP24 3AG
NP24 3AG
NP7 SBD
NP1S 1AE
CF35 5AS
CF72 8)Y
CF72 90P

673.12263
210.71541
814.88402

31.48134
523.80907
483.87993
582.68096
337.96374
116.66437
483.16678
54455991
941.49038

54.01880

Random. Number
673.12263

337.96374
116.66437
483.16678
544.55991
941.49038

54.01880

image36.png
Q- Help Search

> Index<-names(MM) %in¥ c("fieight.in.Kg", Hieight.in.Metres"
> MWM[Index]
Height. in.Metres Weight.in.Kg

CENOn s W~

10
11

MUM[1 Index]
Name
Malcom
Mabel
Manuel
Mark
Marc
Marie
Mari
Melody
Melody
Montgomery
Myer
Maureen

.81
.56
.67

76
72
45
.61
.67
54
80
79
42
92

Age
9
7
45
44
11
2
2
104
51
19
37
52
27

88
58
a1
64
82

69
53
87
97
9
73
119

Sex Home.Postcode Savings.in.Pounds Random.Number

Male

CF24 3AG
CF27 aHL

SHE 4JL

SWS 3JL
BR21 4YE
CF14 78R
NP24 3AG
NP24 3AG

NP7 580
NP15 1AE
CF35 SAS.
CF72 83Y
CF72 90P

30
10000
400
64953

20
10256

32156
56512
15648
2000
250

673.12263
210.71541
814.88402

31.48134
523.80907
48387993
582.68096
337.96374
116.66437
483.16678
544.55991
941.49038

54.01880

image37.png
ot)

Q- Help Search

1
2
3
a
5
6
7
8
9
10
1
12

Hame Age Sex Height.tn.Metres Nelght; n.Kg Moms.Postoode Savings.in.founds Rendom. sber

15
1
2
2
%
15

1.72

P
TTULBBRRITBGE

a
a9
58
7
a5
60

100
75
7
8
a5
51

CF24 3G
€F27 anL
SH6 4)L
SHS 3L
BR21 4YE
CF14 78R
NP24 3AG
NP24 3AG
NP7 58D
NPIS 1AE
CF35 5AS
CF72 8)Y
CF72 9P

741.0167

image38.png
Q- Help Search

> M) <o rbind(1)), M)
> a0
Name Age Sex Height. in.Met:
15
1
2
2
7
15
3
3
19
E]
17
2
7
9
%
a5
a4
1
2
2
104
51
19
3
52
2

3

e e R e R
CF24 346 741.01669
27 4L 553.97742
Sn6 &)L 513.67405
sns 30U 753.59836.
8R21 4YE 83084534
CF14 78R 365.17623
P24 346 465.71015
P24 3AG 976.67164
NP7 580 364.01884
P15 1aE 21496134
CF35 54S, 894.36153
€72 8y 693.42257
CF72 90 971.24004
CF24 346 673.12263
a7 210.71541
Sn6 4JL 814.88402
Sns 33 3148134
BR21 4¥E 52360907
CF14 78R 483.67993
P24 3AG 582.68096
P24 3AG 337.96374
NP7 58D 116.66437
WPIS 1AE 483.16678
€F35 545,

72 8)Y

72 90

55,.~.m._~-
i ¢
:ass:m:m:z:anz:uimnsm;

[
M
¥
3
¥
¥
F
M
M
u
M
]
F
e
F
M
.
M
¥
F
F
M
M
]
e

BAIZETOAIITANTTIVELALIBYURY

image39.png
Q- Help Search

> other_data_set<-data. Frame(Name, Weight)

> merged_data_set<-merge(first_data_set,other_data_set,"Name")
> merged_data_set

Name Age Weight
1 Bob 23 75

image4.png
(Q- Help Search

Name<-c("Bob", "Billy")
Age<-c(23,25)
First_data_set<-data. frame(Nane,Age)
15O
1] "Age" “First_data_set" "Name"

image40.png
Q- Help Search)

> merged_data_set<-merge(first_data_set,other_data_set, "Name",all.x~TRUE)
> merged_data_set
Name Age Weight
Billy 25 NA
Bob 23 75
merged_data_set<-merge(first_data_set,other_data_set, "Name" ,al1.y=TRUE)
merged_data_set
Name Age Weight
Bob 23 75
Ben NA 94
merged_data_set<-merge(first_data_set,other_data_set,"Name",al1=TRUE)
merged_data_set
Name Age Weight
Billy 25 NA
Bob 23 75
Ben NA 94

image41.png
> AL th_BMT<-at
> 1AALW th_BMISGMI<-IAMSNeight. in. Ko/ QMMSHeight in.Notresa2)
> VA th BT

Nase Age
1 Melcom 9 Male 1.8 88 cR2a 386 30
2 Mbel 76 F 156 S8 27 an 10000
3 Menwel 45 W 167 a M6 431 400
. Mork 44 Mole 176 o w5 301 64953
5 Morc 11 M 12 82 R 4ve 512
6 Marie 24 Female 145 38 cra7m 20
¥ Mot 26 F 161 6 Np2e 3G 10256
8 Melody 104 F 167 53 W24 3AG
9 Melody 51 F 154 8 WP? 550
10 Montgomery 19 M 180 97 WP1s 1E
1 wyer 37 M 179 %9 35 SAS
2 Maureen 82 F 1e2 7 ey
3 Mike 27 Mole 182 s cFr2 9
> an
Name Age Sex Height.in.Metres Neight.in.Kg Home.Postcode Savings.
1 Melcos 9 Male 181 8 26 36
2 Mobel 76 F 156 58 cr27 am
3 Menwel 45 W 167 a W6 43U
. Mark 44 Male 176 o 5w 30U
5 Marc 11 M 172 82 R2ave
6 Marie 24 Female 145 38 cra 7R
7 Mori 26 F 161 6 W26 346
8 Melody 104§ 167 53 NP2e 3AG
9 Melody 51 F 15 87 W7 580
10 Montgomery 19 M 180 97 WIS 1E
n Myer 37w 179 99 35 8AS
12 Maureen 2 F 142 73 2
13 Mike 27 Male 192 19 2w

Pounds Random Nusber BMI

673.12263 26.86121
21071541 23 83300
814.88402 14.70124.
3148134 20.66116
523.80907 27.74769
483.87993 18.97372
582.68096 2661934
1900391
36.68410
2993827

3620313
3228082

image42.png
00 RConsole

o Ags . Sen Heign. i et el .83 ome st Soving. 0 Pounds Rondosber 1
PR e it [T 3132263 26.06121
FR ol s S Garan w0 0rise 580
FR el & e W0 seane 14 7011
PR e e 17 “ e 3
S e o i 2w e e
& Marie 20 female s T 2 7093 16.07372
7 el ve @ W ki St 26 e
3 weloy i f Lo s W sise 37,0637 19,0000
9 welody s f s v wrs 1% 116 66437 36 6uato
10 Nontgonery 19 W ey o s etz 6o 29,9327
u e e i oo s s s ssont 2808001
2 wawen 82§ 1 o an e w0 941 40038 3620313
BB e 19 W a7 0 alommen 32, 2h0a2
Nose AgeSex Helght.in Motres Weight.in.Ko Home, Postcode Sovings. in.Pounds Rondon. Nusber
1 welces 9 wele Vi T 5%
H s S Garan 10000
H 1o & Smear gl
: 17 @ s 0953
s i B owaan gt
H s 3 o 2
H Ve @ e 10286
1 1e S wea st
s Vs o s a6
i T 7 s e stz
i %o s seas
v 2 G 000
e W Grw 250

image43.png
Symbol Definition Example
**orh Exponential y=x"*3 or y=x"3
* Multiplication r=xy

! Division d=xly

+ Addition S=XHY

- Subtraction t=x-y

image44.png
Symbol Definition Example

abs Absolute value y=abs(x)

floor Integer (takes the integer y=floor(x)
part of the argument)

log Natural Log y=log(x)

log10 Log base 10 y=log10(x)

round Rounds the argument to y=round(x,2)
the nearest specified level

sqrt Square root t=sqrt(x)

image45.png
Symbol Definition Example
substr Outputs a substring of y=substr(string,N,L)
length L starting at position
N of a string.
toupper converts a string to upper | y=toupper(string)
case
tolower converts a string to lower y=tolower(string)

case

image46.png
Help Search

> library(reshape)
Loading required package: plyr

Attaching package: ‘reshape’

rename, round_any

> 33)<-rename()1, c(Sex="Gender")
)

15
14
2
2
7

12 e 2
13 Jo 7

The Following object(s) are masked From ‘package:plyr’:

CF24 3AG
CF27 4L
6 43
S5 3)L
BR21 4YE
CF14 78R
NP24 3AG
NP24 3AG
N7 580
P15 1AE
CF35 5AS
72 BIY
cF72 9P

Name Age Gender Height. in.Metres Weight.in.Kg Home.Postcode Savings.in.Pounds Random.Nunber

741.0167
553,974
513.8740
7535984,
830.8453
365.1762
65,7102
976.6716
364.0188
214.9013
894.3615
693.4226
971.2400

image47.png
»am

——

L8

R Data Editor

5o
St
James.
Jenny
sutie
Jackie
Jutien

e

172
185
157
159
163
162
165
201
192
154
173
162
162

Weightinka Home poscode
71 Cr24 3AG
73 cr27 4L
49 sW6 4L
58 SWS 3L
70 BR21 4vE
45 CFL4 7B
60 NP24 3AG

100 NP24 3AG
75 NP7 58D
70 NP1 1AE
83 CF35 55
45 CFR2 8y
51 CE72 900

1000
500
357

10930
465029
930

10
102930
2030
84953
470320
15

200

7410167
553.0774
513874
75359084
830.8453
365.1762
465.7102
9766716
364.0188
2140413
8943615
693.4226
97124

image48.png
b @ ® @ birthday_money.csv (~) - VIM

1 Birthday,Amount
2 1,100

32,150

43,120

5 4,0

5 5,500

76,5

1,1 All

image49.png
(=) (& Helpsearch)

birthday_money
Birthday Amount
100
150
120
]
500
5
birthday_money$total<-cumsum(birthday_money$Amount)
birthday_money
Birthday Amount total
100 100
150 250
120 370
370
870
875

1
2
3
4
5
6
>
>

Vou s wn e

image5.png
-) (Q- Help Searct)

> first_data_set

2 Billy 25

image50.png
(Q~ Help Search)

> birthday_money
Birthday Amount total
100 100
150 250
120 370
o 370
500 870
5 875
birthday_money$yearly_diff<-c(NA,diff(birthday_money$Amount))
birthday_money
Birthday Amount total yearly diff
100 100 NA
150 250 50
120 370 -30
370 -120
870 500
875 -495

image51.png
©®®® birthdays.csv (~) - VIM
+ Mame,Birthday
2 Malcolm,09/10/1934
7 Mathieu,04/02/1998
4 Jack,02/11/2005
5 Nicolas,03/03/1978
6 ,05/62/1922
7 Pascal,08/04/1954
8

-,os/es/zeez
9 ,08/01/2004
10 Penny,10/12/1984
11 ﬂ,u/es/was
12 Paul,11/12/1984

13 Janet,12/12/1994
14 Joanna,12/09/1983
15 Iain,01/07/1985

16 ,11/07/1992
17 Bryan,10/09/1986
19 Richie,12/07/1984
19 Dan,02/05/1989

20 _,ez/es/waa
21 Juliet,01/12/1982
22 Vince,14/02/1984
23 Zoe,23/09/1983

<99C written 1,1 All

image52.png
=) Q- Help Search

> birthdays
Name Birthday

1 Malcolm 09/10/1934

2 Mathieu 04/02/1998

3 Jack 62/11/2005

4 MNicolas 03/03/1978

5 Pauline 85/02/1922

6 Pascal €8/04/1954

7 Dimitei €9/03/2002

8 Julien 08/01/2004

9 penny 10/12/1984

10 Tzabela 11/89/1983

11 Paul 11/12/1984

12 Janet 12/12/1994

13 Joanna 12/09/1983

14 01/07/1985

15 Usain 11/67/1982

16 Bryan 10/09/1986

17 Richie 12/07/1984

18 Dan 02/85/1989

19 Leanne 02/09/1988

20 Juliet 01/12/1982

21 Vince 14/02/1984

22 zoe 23/09/1983

> str(birthdays)

‘data.frame': 22 obs. of 2 vnrub\s

$ Nase : Factor w/ 22 levels ,"an

§ Birthdoy: Factor w/ 22 levels "01/07/1985",

image53.png
Symbol Meaning Example
d Day as a number 01-31

a Abbreviated weekday Mon

A Weekday Monday
m Month 01-12

b Abbreviated month Jan

B Month January
y 2 digit year 84

Y 4 digit year 1984

image54.png
[516 4201013222117 911141619181512 2 7 8 3
> birthdoys [order(birthdays$irthday),]
Name Birthday
5 Pauline 1922-02-05
1 Malcoln 1934-10-09
6 Pascal 1954-04-08
4 Nicolas
20 Juliel
10 Tzabela 1983-09-11
13 Joanna 1983-09-12
22 7o0e 1983-09-23
21 Vince 1984-02-14
17 Richie 1984-07-12
9 penny 1984-12-10
11 Paul 1984-12-11
14 Toin 1985-07-01
16 ryon
19 Leanne
18 Do
15 Usain 1992-07-11
12 Janet 1994-12-12
2" Mathicu 1998-02-04
7 Dimitri 2002-03-09
8 Julien 2004-01-08
3 Jack 2005-11-02
> diFF(birthdoys$Birthday[order(birthdays$Birthday)])
Tine differences in days.
[1] 4629 7121 8730 1734 284 1 11 144 149 151 1 202 436 723 242 1166 884 1150 1494 670 664

image55.png
> ifelse(c("True”,"False","True","False"), "Young","01d")
[1] "Young” "0ld" "Young" "Old"
> |

image56.png
(Q- Help Search

> MMMI1)$Age_group<-ifelse(MMMSAge <30, "Young", "01d")
> MMMII)[c("Name", *Age_group")]

Name Age_group
John Young
Jo oud
i oud
James. oud
Jenny Young
Juliet Young
Jackie Young
Julien oud

Joe oud

Jeremioh Young

Jim oud

oud

Young

Young

old

oud

o

Young

Young

Young

oud

oud

Young

oud

oud

Young

image57.png
Symbol Mnemonic Definition

< Lt Less than

<= Le Less than or equal to

> Gt Greater than

>= Ge Greater than or equal to
= Eq Logical Equal to

I= Ne Not equal to

image58.png
Q- Help Search

Candles=c()
for (Age in 11)$Age){

c<-0
for (n in 0:Age){
ce-con

¥
Candles<-c(Candles,c)

Candles<-data. frame(Name~)))$Name ,Age~)))$Age, Candles)

Candles
Name Age Candles
John 15 120
Jo 14 105
Jin 21 231
James 24 300
Jenny 74 2775
Juliet 15 120
Jackie 3 6
37 703
19 190
39 780
17 153
2 :
28

>
>
+
.
+
+
.
.
+
.
.
>
>

LoDV WN -

image59.png
> ket
> evene-24k

> even.nusbers<-c(even)
> whilaCeven<7o)(

“ keked
+ evene-2%k;

+ even_nusbers <-ceven_nusbers, even)

)

> even_nusbers

£ 8 2 4 6 81012 16 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70

image6.png
@O0 Jiesv()-VIM

Name,Age,Sex,Height in Metres,Weight in Kg,Home Postcode,Savings in Pounds,Random Number

Bohn,15,M,1.72,71,CF24 3AG,1000,336.8041790091
J0,14,M,1.85,73,CF27 4HL,500,757.197195664
J111,21,F,1.57,49,5H6 4JL,357,458. 5639406084
James,24,M,1.59,58,SW5 3]L,10930,565.9515243024
Jenny,74,F,1.63,70,BR21 4YE,465029,206.1446015723
Juliet,15,F,1.62,45,CF14 7BR,930,977.9322277755
Jackie,3,F,1.65,60,NP24 3AG,10,564.2944280989
Julien,37,4,2.01,160,NP24 3AG,102930,583.125016652
Joe,19,M,1.92,75,NP7 5BD,2930,206.9145319983
Jeremiah,39,M,1.54,70,NP15 1AE,84953,41.0423562862
Jin,17,M,1.73,83,CF35 S5AS,470320,985.9272670001
Julie,2,F,1.62,45, CF72 83Y,1.5,327.5803755969
J0,7,F,1.62,51, CF72 9DP,200,50.6616821513

ALl

image60.png
Q- Help Search

> shopping <~ function(spend){
+ New.Savings<-11J$Savings. in.Pounds-spend

+ 1)) after_shopping<-data. frame(J)J$Name,01d. Savings-11$Savings. in.Pounds, New. Savings)
+ return(11)_after_shopping)
+1}
> shopping(3)

333.Name 01d.Savings New.Savings
1 John
2 Jo
3 i
4 James
5 Jenny
6 Juliet
7 Jackie
8 Julien
9 Joe
10 Jeremiah
11 Jim
12 Julie
13 Jo

image61.png
Q- Help Search

> fe-function(i){read.csv(paste("File_",i,".csv",sep=""))}
> dat<-lapply(1:5,f)
> dat[1]

image62.png
e a3, ot

et shapming g)
e G me 3 STt .St s Sty

e o i St

B e i 1 B e o 4 1Lt sbmine
L e et Rt e i
Bicay

305 meme 14 s S Sorens

"t
e
e

s s
“he
sy

s

sy

s
‘s

s

EREgen e

image63.png
abs()

Gives the absolute value

ceil() Gives the ceiling

floor() Gives the floor

exp() Gives the exponential

In() Gives the natural log

mod() Performs modulo arithmetic
power() Gives the power.

image64.png
Q- Help Search)

> sqldf("select a.Owner, a.Name as Dog_Name, b.Name as Cat_Name from Dogs as a,
Cats as b where a.Owner=b.Owner")

Ouner Dog_Name Cat_Name
1 Jeff Ruffus Kitty
2 Paul <> <NA>
3 Joanna <NA> Tinkerbell

image65.png
Q- Help Search)

> sqldf("select a.Owner, a.Name as Dog_Name, b.Name as Cat_Name from Dogs as a
left join Cats as b on a.Owner=b.Owner")
Ouner Dog_Name Cat_Nome

Jeff Ruffus Kitty
Janet Sam <NA>.
Paul <NA>. <NA>.
IJoannu <NA> Tinkerbell

image66.png
count

\IL I

Height.in.Metres

image67.png
Frequepcy

Height of people in the JJJ data set

image68.png
Height of people in the JJJ data set

Frequency

image69.png
100 -

Weight.in.Kg

80 -

60 -

. Age
o e 20
.
. . ® 40
@ &
.
| ! ! ! !
16 17 1.8 19 20

Height.in.Metres

image7.png
Q- Help Search

R version 2.14.8 (2011-10-31)

Copyright (C) 2011 The R Foundation for Statistical Computing
ISBN 3-900951-07-

Platforn: 386-opple-darwing.8.0/i386 (32-bit)

R is free software and comes with ABSOLUTELY NO NARRANTY.
You are welcose to redistribute it under certain conditions.
Type ‘license()' or 'licence()' for distribution details.

Natural language support but running in an English locale

R is o collaborative project with many contributors.
Type *contributors()' for more information and
"citation()' on how to cite R or R packoges in publications.

Type ‘demo()’ for some demos, ‘help()' for on-line help, or
*help.start()" for an HTML bromser interface o help.
Type 'a0" to auit R.

[R.cpp GUI 1.42 (5933) i386-apple-darwind.8.0]

[Mistory restored from /Users/VincesAir/.Rapp.history]

The name of the

object created R.

33) e read.csv(files"~/)).csv", head=TRUE)

S Thehead option that tells:
name of the variables from

commerious)

to read the
e first row.

The read.csv com
used to import csv

image70.png
] d

sonoW urubloH

image71.png
20-

1
)
S

1 i 1
8 7 6

Suo UNYBIH

Sex

image72.png
Weight.inKg

120 -

g
|

60 -

40~

v
17

18
Height.in.Metres

20

image73.png
count

Height.in.Metres

image74.png
-
3]

ByUUBIM

image75.png
INFORMS

@INFORMS roLLows you
The Institute for Operations Research and the Management Sciences

is the largest professional society in the world for professionals in the
field of O.R.

Hanover, MD - http://www.informs.org

4,912 308 1,993 -

Tweets

INFORMS
0 RT : RT : Could machine-learning
algorithms debunk Twitter rumors before spread?

INFORMS
0 RT : | made an LP/MILP solver for iPhone. | blogged
about it here:

image76.png
X:) 2 Dropbox —R — 80x24 ol

> g<-userTimeline("INFORMS")

>q
[

[1] “INFORMS: RT @ThaddeuskTSim: RT @Slate: Could machine-learning algorithms de
bunk Twitter rumors before spread? http://t.co/fPwgX@6A #orms #analytics"

(21
[1] "INFORMS: RT @CWoods: I made an LP/MILP solver for iPhone. I blogged about
it here: http://t.co/XLcPxEtf"

s
[1] "INFORMS: RT @or_exchange: New on OR-X: [ANN] Introducing Minimax: an LP/MIL
P solver for iPhone http://t.co/BI0J0SBA"

[141]
[1] “INFORMS: Thanks! RT @nicolasclbr: NCB Operations Research News is out! http
://t.co/GU3gs0Cz » Top stories today via @CompSciFact GINFORMS"

(s
[1] "INFORMS: @jfpuget You're welcome!"

430
[1] “INFORMS: Our thoughts & prayers are heading to those in Sandy Hook."

image8.png
= (@ Help search

Natural language support but ruaning in an English locale

R is a collaborative project with many contributors.
Type *contributors()' for more information and
"citation()' on how to cite R or R packages in publications.

Type 'demo()’ for some demos, 'help(}' for on-line hel
*help.start()" for an HTML browser interface to help.
Type o quit R.

®

[History restored from /Users/Vinceskir/.Rapp.history]

or

GUI 1.42 (5933) i386-apple-darwind.8.0]

> 133 < read.csv(file="~/2)).csv"
> objects()

03 e

5200

ad=TRUE)

Nase Age Sex Height.in.Metres Weight.in.Kg Home.Postcode Savings.in.Pounds Random.Nusber

5 M 1.72 7 CF24 3G
1 oM 1.85 7 CF27 4HL
a 1.57 4 Sn6 4L
2 M 1.59 s8 S 3L
% F 1.63 7 BR2L 4YE
5 F 1.62 a5 CF14 78R
3 F 1.65 6 NP24 34
7 M 2,01 100 NP24 3G
19 M 1.02 7 NP7 58D
B 1.54 I3 NP1S 1AE
7 M 1.73 8 CF35 SAS.
2 F 1.62 a5 CF72 83Y
7 F 1.62 51 CF72 9P

image9.png
B version 2.14.0 (2011-10-31)
Copyrignt (C) 2011 The R Foundation for Statistical Computing
158N 3-900051-97-0

Platform: 1186-apple-darmind.B.0/i386 (32-bit)

8 55 free softaare and cones with ASSOLUTELY NO MRRANTY.

You are meicome to redistribute it under cartain conditions.

Type TicenseO" ar 'licence” for istribution setails.
Noturel Tongusge support but rumming in en Enghish loca

R i o collaborative project with many contributors.

Type TconteibutorsQ)" for mere information ond

“eikationty" on how to cite R or R pocksges in publications.

Type “demc)" for some desos, "help()" for on-line help, or

“help.startl)" for un NTHL browser snterfoce to hel

Type 40" 4o quit .

[R.omp GUI 1,42 (5933) 1386-opple-darwind.8.0]

[History restored from /Users/Vinceshir/.Ropp.history)

> Mome <= c(*lob","Billy")

D
e ptaco command P B emeted The ocain o the o e
T to st o ;e remlme.

13 et At dotaset” ome®

P e

The name ofthe & cbect that we are exparting

